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Abstract

This paper considers the problem of supervised learning with linear methods when both
features and labels can be corrupted, either in the form of heavy tailed data and/or corrupted
rows. We introduce a combination of coordinate gradient descent as a learning algorithm
together with robust estimators of the partial derivatives. This leads to robust statistical learn-
ing methods that have a numerical complexity nearly identical to non-robust ones based on
empirical risk minimization. The main idea is simple: while robust learning with gradient
descent requires the computational cost of robustly estimating the whole gradient to update
all parameters, a parameter can be updated immediately using a robust estimator of a single
partial derivative in coordinate gradient descent. We prove upper bounds on the generalization
error of the algorithms derived from this idea, that control both the optimization and statisti-
cal errors with and without a strong convexity assumption of the risk. Finally, we propose an
efficient implementation of this approach in a new Python library called linlearn, and
demonstrate through extensive numerical experiments that our approach introduces a new in-
teresting compromise between robustness, statistical performance and numerical efficiency
for this problem.

Keywords. Robust methods; Heavy-tailed data; Outliers; Robust gradient descent; Coordinate
gradient descent; Generalization error.

1 Introduction

Outliers and heavy tailed data are a fundamental problem in supervised learning. As explained
by [47], an outlier is a sample that differs from the data’s “global picture”. A rule-of-thumb is
that a typical data set may contain between 1% and 10% of outliers [46], or even more than that
depending on the considered application. For instance, the inherently complex and random nature
of users’ web browsing makes web-marketing data sets contain a significant proportion of outliers
and have heavy-tailed distributions [44]. Statistical handling of outliers was already considered in
the early 50’s [32, 43] and motivated in the 70’s the development of robust statistics [56, 57].

Setting. In this paper, we consider the problem of large-scale supervised learning, where we
observe possibly corrupted samples (Xi, Yi)

n
i=1 of a random variable (X,Y ) ∈ X × Y with

distribution P , where X ⊂ Rd is the feature space and Y ⊂ R is the set of label values. We focus
on linear methods, where the learning task corresponds to finding an approximation of an optimal
parameter

θ? ∈ argmin
θ∈Θ

R(θ) where R(θ) := E
[
`(X>θ, Y )

]
, (1)
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where Θ is a convex compact subset of Rd with diameter ∆ containing the origin and ` : R×Y →
R+ is a loss function satisfying the following. We denote `′(z, y) := ∂`(z, y)/∂z.

Assumption 1. The loss z 7→ `(z, y) is convex for any y ∈ Y, differentiable and γ-smooth in
the sense that |`′(z, y) − `′(z′, y)| ≤ γ|z − z′| for all z, z′ ∈ R and y ∈ Y . Moreover, there
exists q ∈ [1, 2], which we will call the asymptotic polynomial degree, and positive constants
C`,1, C`,2, C

′
`,1 and C ′`,2 such that

|`(z, y)| ≤ C`,1 + C`,2|z − y|q and |`′(z, y)| ≤ C ′`,1 + C ′`,2|z − y|q−1

for all z ∈ R and y ∈ Y .

Note that Assumption 1 holds for the majority of loss functions used both for regression and
classification, such as the square loss `(z, y) = (z − y)2/2 with q = 2 or the Huber loss [55]
`(z, y) = rτ (z − y) for z, y ∈ R with γ = 1 and q = 1, where rτ (u) = 1

2u
21|u|≤τ + τ(|u| −

1
2τ)1|u|>τ with τ > 0 and the logistic loss `(z, y) = log(1 + e−yz) for z ∈ R and y ∈ {−1, 1}
with γ = 1/4 and q = 1. We will see shortly that a smaller degree q associated to the loss entails
looser requirements on the data distribution. If P were known, one could approximate θ? using a
first-order optimization algorithm such as gradient descent (GD), using iterations of the form

θt+1 ← θt − η∇R(θt) with ∇R(θ) = E[`′(X>θ, Y )X] (2)

for t = 1, 2, . . . where η > 0 is a learning rate.

Empirical risk minimization. With P unknown, most supervised learning algorithms rely on
empirical risk minimization (ERM) [102, 40], which requires (a) the fact that samples are indepen-
dent and with the same distribution P and (b) that P has sub-Gaussian tails, as explained below.
Such assumptions are hardly ever met in practice, and entail implicitly that, for real-world appli-
cations, the construction of a training data set requires involved data preparation, such as outlier
detection and removal, data normalization and other issues related to feature engineering [110, 65].
An implicit1 ERM estimator of θ? is a minimizer of the empirical risk Rn given by

θ̂ermn ∈ argmin
θ∈Θ

Rn(θ) where Rn(θ) :=
1

n

n∑
i=1

`(X>i θ, Yi), (3)

for which one can prove sub-Gaussian deviation bounds under strong hypotheses such as bound-
edness of ` or sub-Gaussian concentration [80, 69]. In the general case, ERM leads to poor esti-
mations of θ? whenever (a) and/or (b) are not met, corresponding to situations where (a) the data
set contains outliers and (b) the data distribution has heavy tails. This fact motivated the theory
of robust statistics [55, 57, 45, 46, 99]. The poor performance of ERM stems from the loose
deviation bounds of the empirical mean estimator. Indeed, as explained by [17] for the estima-
tion of the expectation of a real random variable, the Chebyshev inequality provably provides the
best concentration bound for the empirical mean estimator in the general case, so that the error
is Ω(1/

√
nδ) for a confidence 1 − δ. Gradient Descent (GD) combined with ERM leads to an

explicit algorithm using iterations (2) with gradients estimated by an average over the samples

∇̂ermR(θ) := ∇Rn(θ) =
1

n

n∑
i=1

`′(X>i θ, Yi)Xi, (4)

which is, as explained above, a poor estimator of∇R(θ) beyond (a) and (b).
1By implicit, we mean defined as the argmin of some functional, as opposed to the explicit iterations of an optimiza-

tion algorithm: an implicit estimator differs from the exact algorithm applied on the data, while an explicit algorithm
does not.
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Robust gradient descent. A growing literature about robust GD estimators [94, 74, 51, 42]
suggests to perform GD iterations with ∇̂ermR(θ) replaced by some robust estimator of ∇R(θ).
An implicit estimator is considered by [68], based on the minimization of a robust estimate of
the risk objective using median-of-means. Robust estimators of ∇R(θ) can be built using several
approaches including geometric median-of-means [94]; robust coordinate-wise estimators [50]
based on a modification of [17]; coordinate-wise median-of-means or trimmed means [74] or
robust vector means through projection and truncation [94]. Other works achieve robustness by
performing standard training on disjoint subsets of data and aggregating the resulting estimators
into a robust one [82, 11]. We discuss such alternative methods in more details in Section 4 below.

These procedures based on GD require to run costly subroutines (at the exception of [68,
42]) that induce a considerable computational overhead compared to the non-robust approach
based on ERM. The aim of this paper is to introduce robust and explicit learning algorithms, with
performance guarantees under weak assumptions on (Xi, Yi)

n
i=1, that have a computational cost

comparable to the non-robust ERM approach. As explained in Section 2 below, the main idea is to
combine coordinate gradient descent with robust estimators of the partial derivatives ∂R(θ)/∂θj ,
that are scalar (univariate) functionals of the unknown distribution P .

We denote |A| as the cardinality of a finite set A and use the notation JkK = {1, . . . , k} for
any integer k ∈ N \ {0}. We denote xj as the j-th coordinate of a vector x. We will work under
the following assumption.

Assumption 2. The indices of the training samples JnK can be divided into two disjoint sub-
sets JnK = I ∪ O of outliers O and inliers I for which we assume the following: (a) we have
|I| > |O|; (b) the pairs (Xi, Yi)i∈I are i.i.d with distribution P and the outliers (Xi, Yi)i∈O are
arbitrary; (c) there is α ∈ (0, 1] such that

E
[
|Xj |max(2,q(α+1))

]
< +∞, E

[
|Y q−1Xj |1+α

]
< +∞ and E

[
|Y |q

]
< +∞ (5)

for any j ∈ JdK where q ∈ [1, 2] is the loss’ asymptotic polynomial degree from Assumption 1.

Assumption 2 is purposely vague about |I| and |O| and the value of α ∈ (0, 1]. Indeed,
conditions on |O| and α will depend on the considered robust estimator of the partial derivatives,
as explained in Section 3 below, including theoretical guarantees with α < 1 and cases with
E[Y 2] = +∞ (for the Huber loss for instance). The existence of a second moment for X is
indispensable for the objective R(θ) to be Lipschitz-smooth, see Section 2.2 below.

Square loss. For the square loss we have q = 2 and E[Y 2] < +∞ is required for the risk
R(θ) and its partial derivatives to be well-defined. Note that we have E[|`′(X>θ, Y )Xj |1+α] =
E[|Y Xj |1+α] for θ = 0 ∈ Θ, which makes (5) somewhat minimal in order to ensure the existence
of the moment we need for the loss derivative for all θ ∈ Θ.

Huber loss. For the Huber loss, we have q = 1 and the only requirement on Y is E|Y | < +∞ and
we have max(2, q(α + 1)) = 2 ensuring that E[|Xj |2] < +∞, a requirement for the Lipschitz-
smoothness of R(θ), as detailed in Section 2.2.

Logistic loss. For the logistic loss we have |Y | ≤ 1 and q = 1 so that the only assumption is once
again E[|Xj |2] < +∞.

Main contributions. This paper introduces a new interesting compromise between robustness,
statistical performance and numerical efficiency for supervised learning with linear methods through
the following main contributions:

• We introduce a new approach for robust supervised learning with linear methods by com-
bining coordinate gradient descent (CGD) with robust estimators of the partial derivatives
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used in its iterations (Section 2). This novel and intuitive idea turns out to be very effec-
tive experimentally (see Section 6) and amenable to an in-depth theoretical analysis (see
Section 2.2 for guarantees under strong convexity and Section 5 without it).

• We consider state-of-the-art robust estimators of the partial derivatives (Section 3) and pro-
vide theoretical guarantees for CGD combined with each of them. For some robust esti-
mators, our analysis requires only weak moments (allowing E[Y 2] = +∞ in some cases)
together with strong corruption (large |O|) which lets our results apply to very general set-
tings with minimal assumptions compared to the relevant literature. We provide guarantees
for several variants of CGD namely random uniform sampling, importance sampling and
deterministic sampling of the coordinates (Section 2.2).

• We perform extensive numerical experiments, both for regression and classification on sev-
eral data sets (Section 6). We compare many combinations of gradient descent, coordinate
gradient descent and robust estimators of the gradients and partial derivatives. Some of these
combinations correspond to state-of-the-art algorithms [67, 50, 94], and we also consider
several additional baselines such as Huber regression [89], classification with the modified
Huber loss [109], Least Absolute Deviation (LAD) [35] and RANSAC [37]. We carry out
an in-depth experimental comparison of state-of-the-art robust methods for supervised lin-
ear learning both in terms of statistical precision and numerical complexity. We thereby
demonstrate the outstanding performance of our methods on both aspects.

• All the algorithms studied and compared in the paper are made easily accessible in a few
lines of code through a new Python library called linlearn, open-sourced under the
BSD-3 License on GitHub and available here2. This library follows the API conventions
of scikit-learn [91].

2 Robust coordinate gradient descent

CGD is well-known for its efficiency and fast convergence properties based on both theoretical
and practical studies [88, 96, 41, 106] and is the de-facto standard optimization algorithm used
in many machine learning libraries. In this paper, we suggest to use CGD with robust estimators
ĝj(θ) of the partial derivatives gj(θ) := ∂R(θ)/∂θj ∈ R of the true risk given by Equation (1),
several robust estimators ĝj(θ) are described in Section 3 below.

2.1 Iterations

At iteration t+ 1, given the current iterate θ(t), CGD proceeds as follows. It chooses a coordinate
jt ∈ JdK (several sampling mechanisms are possible, as explained below) and the parameter is
updated using {

θ
(t+1)
j ← θ

(t)
j − βj ĝj(θ(t)) if j = jt

θ
(t+1)
j ← θ

(t)
j otherwise

(6)

for all j ∈ JdK, where βj > 0 is a step-size for coordinate j. A single coordinate is updated at each
iteration of CGD, and we will designate d iterations of CGD as a cycle. The CGD procedure is
summarized in Algorithm 1 below, where we denote by X ∈ Rn×d the features matrix with rows
X>1 , . . . , X

>
n and where Xj

• ∈ Rn stands for its j-th column.
A simple choice for the distribution p is the uniform distribution over JdK, but improved con-

vergence rates can be achieved using importance sampling, as explained in Theorem 1 below,
2https://github.com/linlearn/linlearn
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Algorithm 1 Robust coordinate gradient descent

1: Inputs: Learning rates β1, . . . , βd > 0; estimators (ĝj(·))dj=1 of the the partial derivatives;
initial parameter θ(0); distribution p = [p1 · · · pd] over JdK and number of iterations T .

2: Compute I(0) ←Xθ(0)

3: for t = 0, . . . , T − 1 do
4: Sample a coordinate jt ∈ {1, . . . , d} with distribution p independently of j1, . . . , jt−1

5: Compute ĝjt(θ
(t)) using I(t) and put D(t) ← −βjt ĝjt(θ(t))

6: Update the inner products using I(t+1) ← I(t) + Xjt
• D

(t)

7: Apply the update θ(t+1)
jt

← θ
(t)
jt

+D(t)

8: end for
9: return The last iterate θ(T )

where the choice of the step-sizes (βj)
d
j=1 is described as well. The partial derivatives estima-

tors (ĝj(·))dj=1 described in Section 3 will determine the statistical error of this explicit learning
procedure. Note that line 6 of Algorithm 1 uses the fact that

I(t+1) = Xθ(t+1) =
∑
j 6=jt

Xj
•θ

(t+1)
j + Xjt

• θ
(t+1)
jt

=
∑
j 6=jt

Xj
•θ

(t)
j + Xjt

•
(
θ

(t)
jt

+D(t)
)

= I(t) + Xjt
• D

(t).

This computation has complexity O(n), and we will see in Section 3 that the complexity of the
considered robust estimators ĝjt(θ

(t)) at line 5 is also O(n), so that the overall complexity of
one iteration of robust CGD is also O(n). This makes the complexity of one cycle of robust CGD
O(nd), which corresponds to the complexity of one iteration of GD using the non-robust estimator
∇̂ermR(θ), see Equation (4). A more precise study of these complexities is discussed in Section 3,
see in particular Table 1. Moreover, we will see experimentally in Section 6 that our approach is
indeed very competitive in terms of the compromise between computational cost and statistical
accuracy, compared to all the considered baselines.

Comparison with robust gradient descent. Robust estimators of the expectation of a random
vector (such as the geometric median by [82]) require to solve a d-dimensional optimization prob-
lem at each iteration step while, in the univariate case, a robust estimator of the expectation can be
obtained at a cost comparable to that of an ordinary empirical average. Of course, one can combine
such univariate estimators into a full gradient: this is considered for instance by [50, 51, 52, 74, 98],
but this approach accumulates errors into the overall estimation of the gradient. This paper intro-
duces an alternative method, where univariate estimators of the partial derivatives are used imme-
diately to update the current iterate. We believe that this is the main benefit of using CGD in this
context: even if our theoretical analysis hardly explains this, our understanding is that one itera-
tion of CGD is impacted by the estimator error of a single partial derivative, that can be corrected
straight away in the next iteration, while one iteration of GD is impacted by the accumulated esti-
mation errors of the d partial derivatives, when using d univariate estimators for efficiency, instead
of a computationally involved d-dimensional estimator (such as geometric median).

2.2 Theoretical guarantees under strong convexity

In this Section, we provide theoretical guarantees in the form of upper bounds on the risk R(θ(T ))
(see Equation (1)) for the output θ(T ) of Algorithm 1. These upper bounds are generic with respect
to the considered robust estimators

(
ĝj(·)

)d
j=1

and rely on the following definition.
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Definition 1. Let δ ∈ (0, 1) be a failure probability. We say that a partial derivatives estimator ĝ
has an error vector ε(δ) ∈ Rd+ if it satisfies

P
[

sup
θ∈Θ

∣∣ĝj(θ)− gj(θ)∣∣ ≤ εj(δ)] ≥ 1− δ (7)

for all j ∈ JdK.

In Section 3 below, we specify a value of εj(δ) for each considered robust estimator which
will lead to upper bounds on the risk. Recall that gj(θ) = ∂R(θ)/∂θj and let us denote as ej the
j-th canonical basis vector of Rd. We need the following extra assumptions on the optimization
problem itself.

Assumption 3. There exists θ? ∈ Θ satisfying the stationary gradient condition ∇R(θ?) = 0.
Moreover, we assume that there are Lipschitz constants Lj > 0 such that∣∣gj(θ + hej)− gj(θ)

∣∣ ≤ Lj |h|
for any j ∈ JdK, h ∈ R and θ ∈ Θ such that θ + hej ∈ Θ. We also consider L > 0 such that∥∥g(θ + h)− g(θ)

∥∥ ≤ L‖h‖
for any h ∈ Θ and θ ∈ Θ such that θ + h ∈ Θ. We denote Lmax := maxj∈JdK Lj and Lmin :=
minj∈JdK Lj .

Under Assumptions 1 and 2, we know that the Lipschitz constants (Lj)j∈JdK and L do exist.
Indeed, the Hessian matrix of the risk R(θ) is given by

∇2R(θ) = E
[
`′′(θ>X,Y )XX>

]
,

where `′′(z, y) := ∂2`(z, y)/∂z2, so that

Lj = sup
θ∈Θ

E
[
`′′(θ>X,Y )(Xj)2

]
and L = sup

θ∈Θ

∥∥∇2R(θ)
∥∥

op
, (8)

where
∥∥H∥∥

op
stands for the operator norm of a matrixH . Assumption 1 entails Lj ≤ γE

[
(Xj)2

]
,

which is finite because of Equation (5) from Assumption 2. In order to derive linear convergence
rates for CGD, it is standard to require strong convexity [88, 105]. Here, we require strong con-
vexity on the risk R(θ) itself, as described in the following.

Assumption 4. We assume that the riskR given by Equation (1) is λ-strongly convex, namely that

R(θ2) ≥ R(θ1) + 〈∇R(θ1), θ2 − θ1〉+
λ

2
‖θ2 − θ1‖2 (9)

for any θ1, θ2 ∈ Θ.

Assumption 4 is satisfied whenever λmin

(
∇2R(θ)

)
≥ λ for any θ ∈ Θ, where λmin(H) stands

for the smallest eigenvalue of a symmetric matrixH . For the least-squares loss, this translates into
the condition λmin

(
E[XX>]

)
≥ λ. Note that one can always make the risk λ-strongly convex

by considering ridge penalization, namely by replacing R(θ) by R(θ) + λ
2‖θ‖

2
2, but we provide

also guarantees without this Assumption in Section 5 below. The following Theorem provides an
upper bound over the risk of Algorithm 1 whenever the estimators ĝj(·) have an error vector ε(δ),
as defined in Definition 1. We introduce for short R? = R(θ?) = minθ∈ΘR(θ).
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Theorem 1. Grant Assumptions 1, 3 and 4. Let θ(T ) be the output of Algorithm 1 with step-sizes
βj = 1/Lj , an initial iterate θ(0), uniform coordinates sampling pj = 1/d and estimators of the
partial derivatives with error vector ε(·). Then, we have

E
[
R(θ(T ))

]
−R? ≤

(
R(θ(0))−R?

)(
1− λ

Lmaxd

)T
+

Lmax

2λLmin

∥∥ε(δ)∥∥2

2
(10)

with probability at least 1−δ, where the expectation is w.r.t. the sampling of the coordinates. Now,
if Algorithm 1 is run as before, but with an importance sampling distribution pj = Lj/

∑
k∈JdK Lk,

we have

E
[
R(θ(T ))]−R? ≤

(
R(θ(0))−R?

)(
1− λ∑

j∈JdK Lj

)T
+

1

2λ

∥∥ε(δ)∥∥2

2
(11)

with probability at least 1− δ.

The proof of Theorem 1 is given in Appendix 9. It adapts standard arguments for the analysis
of CGD [88, 105] with inexact estimators of the partial derivatives. The statistical error ‖ε(δ)‖22
is studied in Section 3 for each considered robust estimator of the partial derivatives. Both (10)
and (11) are upper bounds on the excess risk with exponentially vanishing optimization errors
(called linear rate in optimization) and a constant statistical error. The optimization error term
of (11), given by (

R(θ(0))−R?
)(

1− λ∑
j∈JdK Lj

)T
,

goes to 0 exponentially fast as the number of iterations T increases, with a contraction constant
better than that of (10) since

∑
j∈JdK Lj ≤ dLmax. This can be understood from the fact that

importance sampling better exploits the knowledge of the Lipschitz constants Lj . Also, note that
T is the number of iterations of CGD, so that T = Cd where C is the number of CGD cycles.
Therefore, defining L′ := 1

d

∑
j∈JdK Lj , we have(

1− λ

dL′

)Cd
≤
(

1− λ

L′

)C
,

for d ≥ 1, which leads to a linear rate at least similar to the one of GD [12].
Theorem 1 proves an upper bound on the excess risk R(θ(T )) − R? of the iterates of robust

CGD directly, without using an intermediate upper bound on ‖θ(T ) − θ?‖22. This differs from the
approaches used by [94, 50] that consider robust GD (while we introduce robust CGD here) to
bound the excess risk of the iterates. This allows us to obtain a better contraction factor for the
optimization error and a better constant in front of the statistical error. Note that we can derive
also an upper bound on ‖θ(T ) − θ?‖22, see Theorem 4 in Appendix 9.

Note that the iterations considered in Algorithm 1 do not perform a projection in Θ. Indeed,
one can show that ‖θ(t) − θ?‖ is also subject to a contraction and is therefore decreasing w.r.t. t.
Thus, if θ(0) = 0, iterates θ(t) naturally belong to the `2 ball of radius 2‖θ?‖.

Step-sizes. The step-sizes βj = 1/Lj are unknown, since they are functionals of the unknown
distribution P . So, we provide, in Appendix 8.1, theoretical guarantees similar to that of The-
orem 1 using step-sizes β̂j = 1/L̂j , where L̂j is a robust estimator of the upper bound Lj :=
γE
[
(Xj)2

]
≥ Lj of the Lipschitz constant Lj .
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A deterministic result. The previous Theorem 1 provides upper bounds on the expectation of
the excess risk with respect to the sampling of the coordinates used in CGD. In Theorem 2 below,
we provide an upper bound similar to the one from Theorem 1, but with a fully deterministic
variant of CGD, where we replace line 4 of Algorithm 1 with a deterministic cycling through the
coordinates.

Theorem 2. Grant Assumptions 1, 3 and 4. Let θ(T ) be the output of Algorithm 1 with step-sizes
βj = 1/Lj , an initial iterate θ(0), deterministic cycling over JdK such that

{jtd+1, jtd+2, . . . , j(t+1)d−1} = JdK

for any t and estimators of the partial derivatives with error vector ε(·). Then, we have

R(θ(T ))−R? ≤
(
R(θ(0))−R?

)(
1− 2λκ

)T
+

3

8λκLmin

∥∥ε(δ)∥∥2

2

with probability at least 1− δ, where we introduced the constant

κ =
1

8Lmax(1 + d(Lmax/Lmin))
.

The proof of Theorem 2 is given in Appendix 9 and uses arguments from [7] and [73]. It
provides an extra guarantee on the convergence of CGD, for a very general choice of coordinates
cycling, at the cost of degraded constants compared to Theorem 1, both for the optimization and
statistical error terms.

Note that, our convergence results are set under a Lipschitz-smoothness assumption (see also
Theorem 3 for the non strongly convex case), this excludes problems with non-smooth regular-
ization such as Lasso to which CGD has commonly been applied [106, 38, 107]. Although such
applications remain beyond the scope of our theory, there is no reason to doubt that plugging ro-
bust estimators, such as those given in Section 3 below, into CGD applied to non-smooth problems
would lead to improved statistical performance and robustness.

3 Robust estimators of the partial derivatives

We consider three estimators of the partial derivatives

gj(θ) =
∂R(θ)

∂θj
= E

[
`′(X>θ, Y )Xj

]
that can be used within Algorithm 1: Median-of-Means in Section 3.1, Trimmed mean in Sec-
tion 3.2 and an estimator that we will call “Catoni-Holland” in Section 3.3. We provide, for each
estimator, a concentration inequality for the estimation of gj(θ) for fixed θ under a weak moments
assumption (Lemmas 2, 3 and 4). We derive also uniform versions of the bounds in each case
(Propositions 1, 2, 3 and 4) which define the error vectors to be plugged into Theorems 1 and 2.
We also discuss in details the numerical complexity of each estimator and explain that they all are,
in their own way, an interpolation between the empirical mean and the median. We wrap up these
results in Table 1 below.

The deviation bound optimality in Table 1 is meant in terms of the dependence, up to a con-
stant, on the sample size n, required confidence δ ∈ (0, 1) and distribution variance3. An esti-
mator’s deviation bound is deemed optimal if it fits the lower bounds given by Theorems 1 and 3

3or more generally the centered moment of order 1 + α for α ∈ (0, 1], see below.
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Optimal
deviation bound

Robustness
to outliers

Numerical
complexity

Hyper-
parameter

ERM No None O(n) None

MOM Yes Yes for |O| < K/2 O(n+K) K ∈ JnK

CH Yes None O(n) Scale s

TM Yes Yes for |O| < n/8 O(n) Proportion ε ∈ [0, 1/2)

Table 1: Properties of some robust estimators, where ERM = Empirical Risk Minimizer (ordinary
mean), MOM = Median-of-Means, CH = Catoni-Holland and TM = Trimmed Mean. We recall that
n = sample size and |O| = number of outliers. The parameters of each estimators are: the number
of blocks K in MOM, a scale parameter s > 0 in CH and a proportion of samples ε in TM.

in [77]. Let us introduce the centered moment of order 1 + α of the partial derivatives and its
maximum over Θ, given by

mα,j(θ) :=E
[∣∣`′(X>θ, Y )Xj − E[`′(X>θ, Y )Xj ]

∣∣1+α
]

and Mα,j =sup
θ∈Θ

mα,j(θ) (12)

for α ∈ (0, 1]. Note that m1,j(θ) = V
[
`′(X>θ, Y )Xj

]
and we know that mα,j(θ) exists, as

explained in the next Lemma.

Lemma 1. Under Assumptions 1 and 2 the risk R(θ) is well defined for all θ ∈ Θ and we have

E
[∣∣`′(X>θ, Y )Xj

∣∣1+α]
< +∞

for any j ∈ JdK and θ ∈ Θ.

The proof of Lemma 1 involves simple algebra and is provided in Section 9 below. Let us
introduce

gij(θ) := `′(X>i θ, Yi)X
j
i , (13)

the sample i ∈ JnK partial derivative for coordinate j ∈ JdK.

3.1 Median-of-Means

The Median-Of-Means (MOM) estimator is the median

ĝMOMj (θ) := median
(
ĝ

(1)
j (θ), . . . , ĝ

(K)
j (θ)

)
(14)

of the block-wise empirical means

ĝ
(k)
j (θ) :=

1

|Bk|
∑
i∈Bk

gij(θ) (15)

within blocks B1, . . . , BK of roughly equal size that form a partition of JnK and that are sampled
uniformly at random. This estimator depends on the choice of the number K of blocks used to
compute it, which can be understood as an “interpolation” parameter between the ordinary mean
(K = 1) and the median (K = n). It is robust to heavy-tailed data and a limited number of outliers
as explained in the following lemma.
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Lemma 2. Grant Assumptions 1 and 2 with α ∈ (0, 1]. If |O| ≤ K/12, we have:

P
[∣∣ĝMOMj (θ)− g(θ)j

∣∣ > (24mα,j(θ))
1/(1+α)

(K
n

)α/(1+α)
]
≤ e−K/18

for any fixed j ∈ JdK and θ ∈ Θ. If we fix a confidence level δ ∈ (0, 1) and choose K :=
d18 log(1/δ)e, we have

∣∣ĝMOMj (θ)− g(θ)j
∣∣ ≤ cαmα,j(θ)

1/(1+α)
( log(1/δ)

n

)α/(1+α)

≤ cαM1/(1+α)
α,j

( log(1/δ)

n

)α/(1+α)
(16)

with a probability larger than 1− δ, where cα := 2(3+α)/(1+α)3(1+2α)/(1+α).

The proof of Lemma 2 is given in Section 9 below and it adapts simple arguments from [77]
and [68]. Compared to [77], it provides additional robustness with respect to |O| ≥ 1 outliers and
compared to [68] it provides guarantees with weak moments α < 1. An inspection of the proof
of Lemma 2 shows that it holds also under the assumption |O| ≤ (1 − ε)K/2 for any ε ∈ (0, 1)
with an increased constant cα = 8× 31/(1+α)/ε(1+2α)/(1+α). This concentration bound is optimal
under the (1 + α)-moment assumption (see Theorems 1 and 3 in [77]) and is sub-Gaussian when
α = 1 (finite variance). The next proposition provides a uniform deviation bound over Θ for
ĝMOMj (θ).

Proposition 1. Grant Assumptions 1 and 2 with α ∈ (0, 1] and |O| ≤ K/12. We have

P
[

sup
θ∈Θ

∣∣ĝMOMj (θ)− gj(θ)
∣∣ ≤ εMOMj (δ)

]
≥ 1− δ

for any j ∈ JdK, with

εMOMj (δ) := cα

(
Mj,α +

mL,α

nα

)1/(1+α)( log(d/δ) + d log(3∆nα/(1+α)/2)

n

)α/(1+α)

+ (L+ Lj)
( 1

n

)α/(1+α)

where L = γE‖X‖2, mL,α = E|γ‖X‖2 − L|1+α and cα = 2(3+2α)/(1+α)3(1+3α)/(1+α).

The proof of Proposition 1 is given in Section 9 and uses methods similar to Lemma 2 with an
ε-net argument. This defines the error vector εMOM(δ) of the MOM estimator of the partial derivatives
in the sense of Definition 1, that can be combined directly with the convergence results from
Theorems 1 and 2 from Section 2. Since the optimization error decreases exponentially w.r.t. the
number of iterations T in these theorems, while the estimator error ‖ε(δ)‖2 is fixed, one only needs
T = O(‖ε(δ)‖2) to make both terms of the same order.

About uniform bounds. What is necessary to obtain a control of the excess risk of robust CGD
is a control of the noise terms |ĝj(θ(t)) − gj(θ(t))|, where both iterates θ(t) and estimators ĝj(·)
of the partial derivatives depend on the same data. This forbids the direct use of a deviation such
as the one from Lemma 2 (and Lemmas 3 and 4 below) where θ must be deterministic. We use
in this paper an approach based on uniform deviation bounds (Propositions 1, 3 and 4) in order
to bypass this problem, similarly to [52] and many other papers using empirical process theory.
This is of course pessimistic, since θ(t) goes to θ? as t increases. Another approach considered
in [94] is to split data into segments of size n/T and to compute the gradient estimator using
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a segment independent of the ones used to compute the current iterate. This approach departs
strongly from what is actually done in practice, and leads to controls on the excess risk expressed
with δ̃ = δ/T and ñ = n/T instead of δ and n, hence a deterioration of the control of the excess
risk. Our approach based on uniform deviations also suffers from a deterioration, due to the use of
an ε-net argument, observed in Proposition 1 through the extra dα/(1+α) factor when compared to
Lemma 2. Avoiding such deteriorations is an open difficult problem, either using uniform bounds
or data splitting.

In addition to Proposition 1, we propose another uniform deviation bound for ĝMOMj (θ) using the
Rademacher complexity, which is a fundamental tool in statistical learning theory and empirical
process theory [70, 64, 6]. Let us introduce

Rj(Θ) = E
[

sup
θ∈Θ

∑
i∈I

εig
i
j(θ)

]
for j ∈ JdK, where (εi)i∈I are i.i.d Rademacher variables and where we recall that I contains the
inliers indices (see Assumption 2).

Proposition 2. Grant Assumptions 1 and 2 with α ∈ (0, 1]. If |O| ≤ K/12, we have

P
[

sup
θ∈Θ

∣∣ĝMOMj (θ)− gj(θ)
∣∣ ≥ max

(( 36Mα,j

(n/K)α

)1/(1+α)
,
64Rj(Θ)

n

)]
≤ e−K/18

for any j ∈ JdK. If we fix a confidence level δ ∈ (0, 1) and choose K := d18 log(1/δ)e, we have

sup
θ∈Θ

∣∣ĝMOMj (θ)− g(θ)j
∣∣ ≤ max

(
cαM

1/(1+α)
α,j

( log(d/δ)

n

)α/(1+α)
,
64Rj(Θ)

n

)
(17)

with a probability larger than 1 − δ for all j ∈ JdK, where cα := 2(2+α)/(1+α)32. Moreover, if
µ

2(1+α)
X,j := E[(Xj)2(1+α)] < +∞ for all j ∈ JdK we have

Rj(Θ) ≤ γ∆Cα

(
nµ1+α

X,j

∑
k∈JdK

µ1+α
X,k

)1/(1+α)
= O((nd)1/(1+α)),

where Cα is a constant depending only on α.

The proof of Proposition 2 is given in Section 9 and borrows arguments from [68, 10]. For α =
1, the bound (17) has order O(

√
d/n) similarly to Theorem 2 from [68], although we consider

here a different quantity (Rademacher complexity of the partial derivatives, towards the study of
the explicit robust CGD algorithm, while implicit algorithms are studied herein). Note also that
we do not prove similar uniform bounds using the Rademacher complexity for the TM and CH

algorithms considered below, an interesting open question.

Comparison with [94, 50]. A first distinction of our results compared to [94, 50] is the use and
theoretical study of robust CGD instead of robust GD. A second distinction is that we work under
1 + α moments on the partial derivatives of the risk, while [94, 50] require α = 1. Our setting is
similar but more general than the one laid out in [50] since the latter does not consider the presence
of outliers. Theorem 5 from [50] states linear convergence of the optimization error thanks to
strong convexity similarly to our Theorem 1. Their management of the statistical error is quite
similar and leads to the same rate. However, our bound involves the sum of the coordinatewise
moments of the gradient thanks to Proposition 1, an improvement over the bound from [50] which
is only stated in terms of a uniform bound on the coordinate variances. Another reference point
is the heavy-tailed setting of [94], which deals with heavy-tails independently from the problem
of corruption and requires α = 1. More importantly, the approach considered in [94] relies on
data-splitting, which departs significantly from what is done in practice, while we do not perform
data-spitting but use uniform bounds, as discussed above.
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Complexity of ĝMOMj (θ). The computation of ĝMOMj (θ) requires (a) to sample a permutation of
JnK to sample the blocks B1, . . . , BK , (b) to compute averages within the blocks and (c) to com-
pute the median of K numbers. Sampling a permutation of JnK has complexity O(n) using the
Fischer-Yates algorithm [62], and so does the computation of the averages, so that (a) and (b) have
complexity O(n). The computation of the median of K numbers can be done using the quickse-
lect algorithm [48] with O(K) average complexity, leading to a complexity O(n + K) = O(n)
since K < n.

3.2 Trimmed Mean estimator

The idea of the Trimmed Mean (TM) estimator is to exclude a proportion of data in the tails of
their distribution to achieve robustness. We are aware of two variants: (1) one in which samples
in the tails are removed, the remaining samples being used to compute an empirical mean and
(2) another variant in which samples in the tails are clipped but not removed from the empirical
mean. Variant (1) is robust to η-corruption4 whenever the data distribution is sub-exponential [74]
or sub-Gaussian [29, 28, 31]. Variant (2), also known as Winsorized mean, enjoys a sub-Gaussian
deviation [77] for heavy-tailed distributions. Both robustness properties are shown simultaneously
(sub-Gaussian deviations under a heavy-tails assumption and η-corruption) in [79] (see Theorem 1
therein). We consider below variant (2), which proceeds as follows.

First, the TM estimator splits JnK = Jn/2K ∪ Jn/2K{ where Jn/2K{ = JnK \ Jn/2K, assuming
without loss of generality that n is even, and it computes the sample derivatives gij(θ) given by (13)
for all i ∈ JnK. Then, given a proportion ε ∈ [0, 1/2), it computes the ε and 1 − ε quantiles of
(gij(θ))i∈Jn/2K given by

qε := g
([εn/2])
j (θ) and q1−ε := g

([(1−ε)n/2])
j (θ),

where g(1)
j (θ) ≤ · · · ≤ g(n/2)

j (θ) is the order statistics of (gij(θ))i∈Jn/2K and where [x] is the lower
integer part of x ∈ R. Finally, the estimator is computed as

ĝTMj (θ) =
2

n

∑
i∈Jn/2K{

qε ∨ gij(θ) ∧ q1−ε, (18)

where a∧b := min(a, b) and a∨b := max(a, b), namely it is the average of the partial derivatives
from samples in Jn/2K{ clipped in the interval [qε, q1−ε]. Note that ĝTMj (θ) is also some form of
“interpolation” between the average and the median through ε: it is the average of the partial
derivatives for ε = 0 and their median for ε = 1/2. As explained in the next lemma, the TM

estimator is robust both to a proportion of corrupted samples and heavy-tailed data.

Lemma 3. Grant Assumptions 1 and 2 with α ∈ (0, 1] and assume that |O| ≤ ηn with η < 1/8.
If we fix a confidence level δ ∈ (0, 1) and choose ε = 8η + 12 log(4/δ)/n, we have

|ĝTMj (θ)− gj(θ)| ≤ 7mα,j(θ)
1/(1+α)

(
4η +

6 log(4/δ)

n

)α/(1+α)

≤ 7M
1/(1+α)
α,j

(
4η +

6 log(4/δ)

n

)α/(1+α)

with a probability larger than 1− δ.

The proof of Lemma 3 is given in Section 9 and extends Theorem 1 from [79] to α ∈ (0, 1]
instead of α = 1 only. It shows that the TM estimator has the remarkable quality of being si-
multaneously robust to heavy-tailed and a fraction of corrupted data, as opposed to MOM which is

4We call “η-corruption” the context where the outlier set O in Assumption 2 satisfies |O| = ηn with η ∈ [0, 1/2)
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only robust to a limited number of outliers. Note that for the computation of the TM estimator, the
splitting JnK = Jn/2K∪ Jn/2K{ is a technical theoretical requirement used to induce independence
between qε, q1−ε and the sample partial derivatives (gij(θ))i∈Jn/2K{ involved in the average (18).
Our implementation does not use this splitting.

Comparison with [94]. A comparison between Lemma 3 and the results from [94] pertaining
to the corrupted setting is relevant here. We first point out that corruption in [94] is modeled as
receiving data from the “η-contaminated” distribution (1 − η)P + ηQ with Q an arbitrary dis-
tribution. On the other hand, Lemma 3 considers the more general η-corrupted setting where an
η-proportion of the data is replaced by arbitrary outliers after sampling. In this case, Lemma 3
results in a statistical error with a dependence of order

√
ηd in the corruption (on the vector eu-

clidean norm). On the other hand, Lemma 1 in [94] yields a better dependence of order
√
η log d

in the corresponding case. Keep in mind, however, that Algorithm 2 from [94] which achieves
this rate requires recursive SVD decompositions to compute a robust gradient making it compu-
tationally heavy and impractical for moderately high dimension. Additionally, the relevant results
in [94] require a stronger moment assumption on the gradient and impose additional constraints
on the corruption rate η. We also mention Algorithm 5 from [94] which yields an even better
dependence on the dimension (see their Lemma 2), although it involves a computationally costly
procedure as well. Besides, knowledge of the trace and operator norm of the covariance matrix of
the estimated vector is required which makes the algorithm more difficult to use in practice.

Proposition 3. Grant Assumptions 1 and 2 with α ∈ (0, 1] and |O| ≤ ηn. We have

P
[

sup
θ∈Θ

∣∣ĝTMj (θ)− gj(θ)
∣∣ ≤ εTMj (δ)

]
≥ 1− δ

for any j ∈ JdK with

εTMj (δ) :=28
(
Mj,α+

mL,α

nα(1+α)

)1/(1+α)(
2η+3

log(4d/δ)+d log(3∆nα/(1+α)/2)

n

)α/(1+α)

+
L+ Lj

nα/(1+α)

where L and mL,α are as in Proposition 1.

The proof of Proposition 3 is given in Appendix 9 and uses an ε-net argument to obtain a
uniform bound. Similarly to MOM, the resulting statistical error has optimal dependence on the
(1 + α)-moments of the partial derivatives (12).

By plugging, the error vector εTM(δ) into Theorem 1, we obtain the following corollary which
summarizes the best learning guarantees we obtain.

Corollary 1. In the combined settings of Theorem 1 and Proposition 3, let θ̂ := θ(T ) denote
the estimator obtained by running CGD with importance sampling using the TM estimator for T
iterations where T will be specified shortly. Then, with probability at least 1− δ we have

λ

2
E
∥∥θ̂−θ?∥∥2≤E[R(θ̂)]−R?≤O

( 1

λ

(∑
j∈JdK

M
2/(1+α)
j,α

)(
η+

log(d/δ)+d log(n)

n

)2α/(1+α))
, (19)

where the expectations are w.r.t. the sampling of the coordinates. The above bound holds for a
number of iterations T of order

T ≥ Ω

(
log

[
λ(R(θ(0))−R?)∑

j∈JdK
M

2/(1+α)
j,α

(
η+ log(d/δ)+d log(n)

n

)2α/(1+α)

]/
log
[ 1

1−λ
/ ∑
j∈JdK

Lj

])
.
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The proof of Corollary 1 is given in Appendix 9 and is a straightforward combination of
Theorem 1 and Proposition 3 where a big O notation was used to make the bound more legible.

Complexity of ĝTMj (θ). The most demanding part for the computation of ĝTMj (θ) is the computa-
tion of qε and q1−ε. A naive idea is to sort all n values at an average costO(n log n) with quicksort
for example [48] and to simply retrieve the desired order statistics afterwards. Of course, better
approaches are possible, including the median-of-medians algorithm (not to be confused with
MOM), which remarkably manages to keep the cost of finding an order statistic with complexity
O(n) even in the worst case (see for instance Chapter 9 of [24]). However, the constant hidden
in the previous big-O notations seriously impact performances in real-world implementations: we
compared several implementations experimentally and concluded that a variant of the quickselect
algorithm [48] was the fastest for this problem.

3.3 Catoni-Holland estimator

This estimator is a variation of the robust mean estimator by Catoni [17] introduced by Hol-
land [50] for robust statistical learning, hence the name “Catoni-Holland”, that we will denote
ĝCHj (θ). It is defined as an M-estimator which consists in solving

n∑
i=1

ψ
(gij(θ)− ζ

ŝj(θ)

)
= 0 (20)

with respect to ζ, where ψ is an uneven function satisfying ψ(0) = 0, ψ(x) ∼ x when x ∼ 0 and
ψ(x) = o(x) when x → +∞ and where ŝj(θ) > 0 is a scale estimator. An approximate solution
can be found using the fixed-point iterations

ζk+1 = ζk +
ŝj(θ)

n

n∑
i=1

ψ
(gij(θ)− ζk

ŝj(θ)

)
,

which can easily be shown to converge to the desired value thanks to the monotonicity and
Lipschitz-property of ψ. Following [50], we use the function ψ(x) = 2 arctan(exp(x)) − π/2,
while functions satisfying − log(1 − x + x2/2) ≤ ψ(x) ≤ log(1 + x + x2/2) are considered
in [17]. As explained in [50], the scale estimator is given by

ŝj(θ) := σ̂j(θ)

√
n

2 log(4/δ)
, (21)

for a confidence level δ ∈ (0, 1), where σ̂j(θ) is an estimator of the standard deviation of the
partial derivative σj(θ) := m1,j(θ)

1/2 = V[`′(X>θ, Y )Xj ]1/2, see (12). The estimator σ̂j(θ) is
defined through another M-estimator solution to

n∑
i=1

χ
(gij(θ)− ḡj(θ)

σ

)
= 0 (22)

with respect to σ, where ḡj(θ) = 1
n

∑n
i=1 g

i
j(θ) and χ is an even function satisfying χ(0) < 0 and

χ(x) > 0 as x → +∞. We use the same function as in [50] given by χ(u) = u2/(1 + u2) − c
where c is such that Eχ(Z) = 0 for Z a standard Gaussian random variable. To compute σ̂j(θ)
we use also fixed-point iterations

σk+1 = σk

(
1− χ(0)

n

n∑
i=1

χ
(gij(θ)− ḡj(θ)

σk

))
. (23)
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We refer to the supplementary material of [50] for further details on this procedure.
The CH estimator can be understood, once again, as an interpolation between the average and

the median of the partial derivatives. Indeed, whenever s is large, the function ψ(·/s) is close to the
sign function, which, if used in (20), leads to an M -estimator corresponding to the median [100].
For s small, ψ(·/s) is close to the identity, so that minimizing (20) leads to an ordinary average.
As explained in the next lemma, this estimator is robust to heavy-tailed data (with α = 1).

Lemma 4. Grant Assumptions 1 and 2 with α = 1 and assume that O = ∅ (no outliers). For
some failure probability δ > 0, assume that we have, with probability at least 1 − δ/2, that
σj(θ)/C

′ ≤ σ̂j(θ) ≤ C ′σj(θ) for some constant C ′ > 1. Then, we have

∣∣ĝCHj (θ)− gj(θ)
∣∣ ≤ C ′σj(θ)√8 log(4/δ)

n
≤ C ′Σj

√
8 log(4/δ)

n

with probability at least 1− δ, where Σj = M1,j = supθ∈Θ σj(θ).

The proof of Lemma 4 is given in Section 9 and is an almost direct application of the deviation
bound from [50]. IfC ′ ≈ 1, the deviation bound of ĝCHj (·) is better than the ones given in Lemmas 2
and 3 with α = 1. This stems from the fact that the analysis of Catoni’s estimator [17] results in a
deviation with the best possible constant [27]. However, contrary to MOM and TM, an estimator of
the scale is necessary: it makes CH computationally much more demanding (see Figure 1 below),
since it requires to perform two fixed-point iterations to approximate both σ̂j(θ) and ĝCHj (θ) and
it requires Assumption 2 with α = 1 so that σj(θ) < +∞. Moreover, there is no guaranteed
robustness to outliers, a fact confirmed by the numerical experiments performed in Section 6
below.

Proposition 4. Grant Assumptions 1 and 2 with α = 1 and O = ∅. Denote L = E[γ‖X‖2],
σ2
L = V[γ‖X‖2] and assume that for all θ, θ̃ ∈ Θ such that ‖θ − θ̃‖ ≤ 1/

√
n we have

1

2
σ2
j (θ̃) ≤ σ2

j (θ) ≤ 2σ2
j (θ̃) and

σj(θ)

σL
≥ 1√

n
.

Furthermore, assume that for all θ ∈ Θ, the variance estimator σ̂j(θ) defined by (22) satisfies
σj(θ)/C

′ ≤ σ̂j(θ) ≤ C ′σj(θ) for some constant C ′ > 1 with probability at least 1 − δ/2. Then,
we have

P
[

sup
θ∈Θ

∣∣ĝCHj (θ)− gj(θ)
∣∣ ≤ εCHj (δ)

]
≥ 1− δ

for any j ∈ JdK with

εCHj (δ) := 4C ′
(

2Σj +
σL√
n

)√ log(4d/δ) + d log(3∆
√
n/2)

n
+
L+ Lj√

n

where L is as in Proposition 1.

The proof of Proposition 4 is given in Section 9. It uses again an ε-net argument combined
with a careful control of the variations of ĝCHj (θ) with respect to θ. Compared with [50], we
make a different use of the CH estimator: while it is used therein to estimate the whole gradient
∇R(θ) during the robust GD iterations, we use it here to estimate the partial derivatives gj(θ)
during iterations of robust CGD. The numerical experiments from Section 6 confirm, in particular,
that our approach leads to a considerable speedup and improved statistical performances when
compared to [50].

The statements of Lemma 4 and Proposition 4 require α = 1, while a very recent extension of
Catoni’s bound [20] is available for α ∈ (0, 1). However, the necessity to estimate the centered
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(1 + α)-moment subsists (standard-deviation for α = 1). Although iteration (23) may be adapted
to this case, theoretical guarantees for it do lack. Note that even for α = 1, the statements of
Lemma 4 and Proposition 4 require assumptions on σ2

j (θ) and σ̂j(θ): an extension to α ∈ (0, 1]
would lead to a set of even more intricate assumptions.

Complexity of ĝCHj (θ). It is not straightforward to analyze the complexity of this estimator, since
it involves fixed-point iterations with a number of iterations that can vary from one run to the other.
However, each iteration has complexity O(n) and we observe empirically that the number of iter-
ations is of constant order (usually smaller than 10) independently from the required confidence.
Therefore, the overall complexity remains in O(n) as demonstrated also by Figure 1 below. The
latter also shows that the numerical complexity of CH is larger than that of MOM and TM, which later
impacts the overall training time.

3.4 A comparison of the numerical complexities

As explained above, all the considered estimators of the partial derivatives have a numerical com-
plexity O(n). However, they perform different computations and have very different running
times in practice. So, in order to compare their actual computational complexities we perform
the following experiment. We consider an increasing sample size n between 102 and 106 on a
logarithmic scale and run all the estimators: MOM, TM, CH and ERM, which is the average of the
per-sample partial derivatives gij(θ). We fix their parameters so as to obtain deviation bounds with
confidence 1− δ = 99%: this corresponds to 82 blocks for MOM, ε = 72/n for TM and δ = 0.01 for
CH, but the conclusion is similar with different combinations of parameters. We use random sam-
ples with student t(2.1) distribution (a finite variance distribution but with heavy tails, although
run times do not differ by much when using different distributions). This leads to the display
proposed in Figure 1, where we display the averaged timings over 100 repetitions (together with
standard-deviations).
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Figure 1: Average running time (y-axis) of all the considered estimators against an increasing sample size
(x-axis). The run times increase with a similar slope (on a logarithmic scale), confirming O(n) complexi-
ties, but differ significantly: ERM is of course the fastest, followed by TM and MOM (both are close) and finally
CH, which is the slowest.

We observe that the run times of the estimators increase with a similar slope (on a logarithmic
scale) against the sample size, confirming the O(n) complexities. However, their timings differ
significantly. MOM and TM share similar timings (TM becomes faster than MOM for large samples)
and are about 10 times slower than ERM. CH is the slowest of all and is roughly 50 times slower
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than ERM. This is of course related to the fact that CH requires to perform the fixed-point iterations
each of which roughly costing Θ(n). In all cases, the estimators’ complexities remain in O(n)
so that the complexity of a single iteration of robust CGD (see Algorithm 1) using either of them
is O(n), which is identical to the complexity of a non-robust ERM-based CGD. This means that
Algorithm 1 achieves robustness at a limited cost, where the computational difference lies only in
the constants in front of the big O notations.

4 Related works

The robust statistics field appeared in the 60s with the pioneering works of [99] and [55] and
has received longstanding interest since then. Several works pursued the development of robust
statistical methods including non-convexM -estimators [57], `1 tournaments [26, 33] and methods
based on depth functions [19, 39, 84], the latter being difficult to use in practice because of their
numerical complexity.

Renewed interest has manifested recently, related, on the one hand, to the increasing need for
algorithms able to learn from large non-curated data sets and on the other hand, to the development
of robust mean estimators with good theoretical guarantees under weak moment assumptions, in-
cluding Median-of-Means (MOM) [86, 2, 58] and Catoni’s estimator [17]. Under adversarial
corruption [18], several statistical learning problems are studied in a robust setting, such as pa-
rameter estimation [66, 93, 83, 28, 79], regression [60, 75, 22, 8], classification [68, 61, 76],
PCA [72, 16, 90] and most recently online learning [101].

In the heavy-tailed setting, a robust learning approach introduced in [11] proposes to optimize
a robust estimator of the risk based on Catoni’s mean estimator [17] resulting in an implicit estima-
tor for which near-optimal guarantees are shown under weak assumptions on the data. However,
the new risk may not be convex (even if the considered loss is), so that its minimization may be
expensive and lead to an estimator unrelated to the one theoretically studied, potentially making
the associated guarantees inapplicable. More recently, an explicit variant was proposed in [108]
which applies Catoni’s influence function to each term of the sum defining the empirical risk for
linear regression. The associated optimum enjoys a sub-Gaussian bound on the excess risk, albeit
with a slow rate since the `1 loss was used. A follow-up extended this result under weaker distri-
bution assumptions [20]. The main drawback of this approach is that the unconventional use of
the influence function introduces a considerable amount of bias which appears in the excess risk
bounds.

Another way to obtain a robust estimator was proposed by [82, 54] and consists in computing
standard ERMs on disjoint subsets of the data and aggregating them using a multidimensional
MOM. This approach recently appeared in [49] as well with various aggregation strategies in order
to perform robust distributed learning. Although the previous works use easily implementable
aggregation procedures, the associated deviation bounds are sub-optimal (see for instance [77]).
Moreover, dividing the data into multiple subsets makes the method impractical for small sample
sizes and may introduce bias coming from the choice of such a subdivision.

In the setting where an η-proportion of the data consist of arbitrary outliers, a robust meta-
algorithm is introduced in [29], which repeatedly trains a given base learner and filters outliers
based on an eccentricity score. The method reaches the target σ

√
η error rate with σ the gradient

standard deviation, although the requirement of multiple training rounds may be computationally
expensive.

More recently, robust solutions to classification problems were proposed in [68] by using
MOM to estimate the risk and computing gradients on trustworthy data subsets in order to perform
descent. A variant was also proposed by the same authors in [67] where a pair of parameters is
alternately optimized for a min-max objective. The resulting algorithm is efficient numerically,
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though it requires a vanishing step-size to converge due to the variance coming from gradient
estimation. Moreover, the provided theoretical guarantees concern the optimum of the formulated
problem but not the optimization algorithm put to use.

Several recent papers [94, 52, 51, 50, 21, 1] use a form of robust gradient descent, where
learning is guided by various robust estimators of the true gradient ∇R(θ). Two such estimators
are proposed in [94]. The first one is a vector analog of MOM where the scalar median is replaced
by the geometric median

GMed(g1, . . . , gK) := argmin
g∈Rd

K∑
j=1

‖g − gj‖2, (24)

which can be computed using the algorithm given in [103]. This vector mean estimator enjoys
improved concentration properties over the standard mean as shown in [82] although these remain
sub-optimal (see also [77]). A line of works [78, 53, 23, 25, 79, 71, 30] specifically addresses the
issue of devising efficient procedures with optimal deviation bounds.

Supervised learning with robustness to heavy-tails and a limited number of outliers is thus
achieved but at a possibly high computational cost. The second algorithm called “Huber gradient
estimator” is intended for Huber’s ε-contamination setting. It uses recursive SVD decompositions
followed by projections and truncations in order to filter out corruption. The method proves to be
robust to data corruption but its computational cost becomes prohibitive as soon as the data has
moderately large dimensionality.

Finally, the recent work of [92] proposed to perform robust regression by applying an initial
filtering step on the data followed by regression using the robust Huber loss function. Remark-
ably, the resulting algorithm attains the optimal rates and is simultaneously robust to η-corruption
and heavy tails. However, the theoretical guarantees only apply for linear regression and require
assumptions which are rarely satisfied in practice such as isotropic covariance of the data.

Table 2 summarizes and compares the characteristics of a number of previously mentioned
algorithms with ours. The statistical rate may be understood as the final excess risk or parameter
error which are interchangeable up to a constant thanks to strong convexity. We have marked the
complexities of some algorithms with a dagger (†) to signal the use of iteratively computed esti-
mators with unpredictable iteration count. This indicates that a big constant is hidden by the big O
notation. Note that the rows “GD-Huber gradient” and “GD-Geometric MOM” (drawn from [94])
have statistical rates in terms of ñ = n/T and δ̃ = δ/T with T the optimization iterations count.
This results from a sample splitting strategy yielding milder dimension dependence. However, one
can check that the best choice of T degrades these bounds by a factor ∼ log n roughly5. Finally,
the statistical rate of “GD-implicit MOM” is marked with a double dagger (‡) because it is derived
under the only assumption that the loss function is Lipschitz. Moreover, it only bounds the error
on objective value estimation and does not directly apply to the estimate computed by the latter
algorithm.

5 Theoretical guarantee without strong convexity

In this section we provide an upper bound similar to that of Theorem 1, but without the strong
convexity condition from Assumption 4. As explained in Theorem 3 below, without strong con-
vexity, the optimization error shrinks at a slower sub-linear rate when compared to Theorem 1 (a
well-known fact, see [12]). In order to ensure that robust CGD, which uses “noisy” partial deriva-
tives, remains a descent algorithm, we assume that the parameter set can be written as a product

5Indeed, considering strong convexity, optimization converges linearly and the final bound is of the form
a exp(−bT ) + cT log(T/δ)/n for some a, b, c > 0 and one can see that T ∼ logn is approximately optimal.
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Algorithm
Statistical

Performance
Iteration/cycle

complexity
Robustness to

corruption

CGD-MOM (MOM)
This paper

O
(
d log(d/δ)+d2 log(n)

n

) O((n+K)d)
(cycle)

Yes for
|O| < K/2

CGD-TM (TM)
This paper

O
(
d
(
η + log(d/δ)+d log(n)

n

)) O(nd)
(cycle)

Yes for
|O| < n/8

CGD-CH (CH)
This paper

O
(
d log(d/δ)+d2 log(n)

n

) O(nd)†
(cycle)

None

GD-Geometric
MOM [94] (GMOM)

O
(
d log(1/δ̃)

ñ

)
O((n+K)d)† Yes for

|O| < K/2

GD-Huber
gradient (HG) [94]

O
(

log(d)
(
η

+
(
d log(d) log(ñ/(dδ̃))

ñ

)3/4

+d

√
η log(d) log(d log(d)/δ̃)

ñ

)) O(nd2 + d3)† Yes for
η-contamination

GD-implicit
MOM [68] (LLM)

O
(√

d+log(1/δ)
n

)
‡ O(nd)

Yes for
|O| < K/4

GD-CH (CH GD)
[50]

O
(
d log(d/δ)+d2 log(n)

n

)
O(nd)† None

Table 2: Summary of the main characteristics of our proposed algorithms (using CGD) and the
main competitors in the literature. The notations ñ and δ̃ stand for n/T and δ/T respectively with
T the optimization horizon. All statistical rates are derived under a strong convexity assumption
except for “GD-implicit MOM”. For each algorithm, the combination of optimization method and
gradient estimator is indicated and the associated code name used in the experimental section is
given between parentheses. Cycle complexities are given for CGD algorithms for more relevant
comparison.

Θ =
∏
j∈JdK Θj and replace the iterations (6) (corresponding to Line 5 in Algorithm 1) by{

θ
(t+1)
j ← projΘj

(
θ

(t)
j − βjτεj

(
ĝj(θ

(t))
))

if j = jt

θ
(t+1)
j ← θ

(t)
j otherwise,

(25)

where projΘj is the projection onto Θj and τε is the soft-thresholding operator given by τε(x) =
sign(x)(|x| − ε)+ with (x)+ = max(x, 0). In Theorem 3 below we use εj = εj(δ), the j-th
coordinate of the error vector from Definition 1, which is instantiated for each robust estimator in
Section 3. Since it depends on the moment mα,j , it is not observable, so we propose in Lemma 6
from Appendix 8.2 an observable upper bound deviation for it based on MOM.

This use of soft-thresholding of the partial derivatives can be understood as a form of partial
derivatives (or gradient) clipping. However, note that it is rather a theoretical artifact than some-
thing to use in practice (we never use τε in our numerical experiments from Section 6 below).
Indeed, the operator τε naturally appears for the following simple reason: consider a convex L-
smooth scalar function f : R→ R with derivative g(x) := f ′(x). An iteration of gradient descent
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from x0 uses an increment δ that minimizes the right-hand side of the following inequality:

f(x0 + δ) ≤ Q(δ, x0) := f(x0) + δg(x0) +
L

2
δ2,

namely argminδ Q(δ, x0) = −g(x0)/L leading to the iterate x0−g(x0)/Lwith ensured improve-
ment of the objective. In our context, g(x) is unknown and we use an estimator ĝ(x) satisfying
|ĝ(x)− g(x)| ≤ ε with a large probability. Taking this uncertainty into account leads to the upper
bound

f(x0 + δ) ≤ Q̃(δ, x0) := f(x0) + δĝ(x0) +
L

2
δ2 + ε|δ|,

and, after projection onto the parameter set, to the iteration (25) since argminδ Q̃(δ, x0) = x0 −
τε(ĝ(x0))/L, with guaranteed decrease of the objective.

The clipping of partial derivatives is unnecessary in the strongly convex case since each itera-
tion translates into a contraction of the excess risk, so that the degradations caused by the gradient
errors remain controlled (see the proof of Theorem 1). No such contraction can be established
without strong convexity, and clipping prevents gradient errors to accumulate uncontrollably.

Theorem 3. Grant Assumptions 1 and 3 with Θ =
∏
j∈JdK Θj . Let θ(T ) be the output of Al-

gorithm 1 where we replace iterations (6) by (25) with step-sizes βj = 1/Lj , an initial iterate
θ(0) ∈ Θ, uniform coordinates sampling pj = 1/d and estimators of the partial derivatives with
error vector ε(·). Then, we have with probability at least 1− δ

E
[
R(θ(T ))]−R?≤ d

T + 1

(∑
j∈JdK

Lj
2

(
θ

(0)
j −θ

?
j

)2
+R(θ(0))

)
+

2‖ε(δ)‖2
T + 1

T∑
t=0

‖θ(t)−θ?‖2,

where the expectation is w.r.t the sampling of the coordinates. Moreover, we have

‖θ(t) − θ?
∥∥

2
≤ ‖θ(t−1) − θ?‖2

with the same probability, for all t ∈ JT K.

The proof of Theorem 3 is given in Appendix 9 and is based on the proof of Theorem 5
from [88] and Theorem 1 from [95] while managing noisy partial derivatives. The optimization
error term vanishes at a sublinear 1/T rate and is initially of order R(θ(0)) plus the potential
Φ(θ) =

∑d
j=1 Lj(θj − θ?j )2/2 which is instrumental in the proof. Notice that ‖ε(δ)‖2 appears

without the square which translates into “slow” 1/
√
n rates instead of “fast” 1/n rates achieved in

Section 2. This degradation is an unavoidable consequence of the loss of strong convexity of the
risk [97].

6 Numerical Experiments

The theoretical results of Sections 2, 3 and 5 can be applied to multiple supervised linear learn-
ing problems, with guaranteed robustness to both heavy-tailed data and outliers. We perform
experiments confirming these properties for several tasks (regression, binary classification and
multi-class classification) on multiple data sets comparing with a number of baselines including
the state-of-the-art.
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6.1 Algorithms

We compare our methods with several baselines among the following set of algorithms. For all
algorithms, we use, unless specified otherwise, the least-squares loss for regression, and the lo-
gistic loss for classification (both for binary and multiclass problems, using the multiclass logistic
loss). All considered algorithms can be used easily in a few lines of Python code with our li-
brary called linlearn, open-sourced under the BSD-3 License on GitHub and available here:
https://github.com/linlearn/linlearn. This library follows the API conventions
of scikit-learn [91].

CGD algorithms: MOM, CH, TM and CGD ERM. The MOM, CH and TM algorithms are the variants
of robust CGD (Algorithm 1) respectively based on the median-of-means, trimmed mean and
Catoni-Holland estimators introduced in Section 3. We also include CGD ERM which is CGD using
a standard mean as estimator.

GD algorithms: ERM, LLM, HG, GMOM, CH GD and Oracle. These are all GD algorithms using
different estimators of the gradient. ERM uses a non-robust gradient based on a simple mean. LLM
corresponds to Algorithm 1 from [68]. It uses a MOM estimation of the risk and performs GD
using gradients computed as the mean of the sample gradients from the block corresponding to
the median of the risk. HG is Algorithm 2 from [94], called Huber Gradient Estimator, which uses
recursive SVD decompositions and truncations to compute a robust gradient. GMOM is Algorithm 3
from [94], which estimates gradients using a geometric MOM (based on the geometric median).
CH GD is the robust GD algorithm from [50], which uses gradients computed as coordinate-wise
CH estimators. We consider also Oracle, which is GD performed with “oracle” gradients, namely
the gradient of the unobserved true risk (only available for linear regression experiments using
simulated data).

Extra algorithms: RANSAC, HUBER and LAD. We also include the following algorithms. For re-
gression, we consider RANSAC [37], using the implementation available in the scikit-learn
library [91]. HUBER stands for ERM learning with the modified Huber loss [109] for classifica-
tion and Huber loss [89] for regression. LAD is ERM learning using the least absolute deviation
loss [35], namely regression using the mean absolute error instead of least-squares.

6.2 Regression on simulated data

We consider the following simulation setting for linear regression with the square loss. We gener-
ate features X ∈ Rd with d = 5 with a non-isotropic Gaussian distribution with covariance matrix
Σ and labels Y = X>θ? + ξ for a fixed θ? ∈ Rd and simulated noise ξ. Since all distributions are
known in this setting, we can compute the true risk and true gradients (used in Oracle).

We consider the following settings: (a) ξ is centered Gaussian; (b) ξ is Student with ν = 2.1
degrees of freedom (heavy-tailed noise). In the remaining settings (c), (d), (e) and (f), ξ is as
in (b) but 1% of the data is replaced by outliers as follows. For case (c), X ∈ R5 is replaced
by a constant equal to λmax(Σ) (largest eigenvalue of Σ) and labels are replaced by 2ymax with
ymax = maxi∈I |yi|; for (d) we do the same as (c) and multiply labels by −1 with probability
1/2; for (e) we sample X = 10λmax(Σ)v + Z where v ∈ R5 is a fixed unit vector and Z is a
standard Gaussian vector and labels are i.i.d. Bernoulli random variables; finally for (f) we sample
X = 10λmax(Σ)V where V is uniform on the unit sphere and labels y = ymax × (ε+ U) where
ε is a Rademacher variable and U is uniform in [−1/5, 1/5].

For this experiment, we fix the parameters of the robust partial derivative estimators using
the confidence level δ = 0.01 and the number of outliers for MOM and TM. We report, for all
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algorithms and settings (a)-(f), the evolution of the square loss (y-axis) along the iterations (x-
axis, corresponding to cycles for CGD and iterations for GD). The results are averaged over 30
repetitions.
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Figure 2: Excess-risk for the square loss (y-axis) against iterations (x-axis) for all the considered
algorithms in the simulation settings (a)-(c) (top row) and (d)-(f) (bottom row). We zoom-in the
last iterations for settings (a) and (b) to improve readability.

We observe that CGD-based algorithms generally converge faster than GD-based ones, in-
dependently of the quality of the optimum found. For setting (a), the final performance of all
algorithms is roughly similar to that of ERM (as expected since the data are neither heavy-tailed nor
corrupted) except for LLM and HG that converge slowly. For setting (b), the performance of ERM de-
grades visibly. Among robust methods, a slight advantage is observed when a robust vector mean
is used as opposed to coordinatewise estimators. Though, MOM seems to be an exception to this
rule. Different behaviours manifest in settings (c)-(f). We observe that ERM and Catoni-Holland
estimators (CH and CH GD) are generally the most sensitive to outliers, especially in setting (c)
where corrupted samples are introduced in a single-direction. The best final solutions are often
found by GMOM and HG. This is not surprising since the latter is designed to handle corrupted data
and the former is far from its breakdown point with only 1% corruption. Nonetheless, we also
observe that MOM and TM consistently show comparable performance. In particular, for settings (d)
and (f), corrupted samples are introduced in multiple directions and the performance gap between
GMOM/HG and MOM/TM is small. Note that MOM/TM always converge faster. Finally, while LLM seems
robust to heavy tails and outliers, its use of a median mini-batch and vanishing steps makes it
unstable and often prevents it from converging to a good minimum compared to other algorithms.

6.3 Classification on real data sets

We consider classification tasks (binary and multiclass) on several data sets from the UCI Machine
Learning Repository [34]. We use the logistic loss for binary and multiclass classification prob-
lems. For k-class problems with k > 2, the parameter θ is a d× k matrix and CGD is performed
block-wise along the class axis. In this case, a CGD cycle performs again d iterations, one for each
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feature coordinate, each time updating the k associated model weights (a form of block coordinate
gradient descent, see [9] for arguments in favor of this approach).

For each data set, we corrupt an increasing random fraction of samples with uninformative
outliers or heavy-tailed noise. Each algorithm is hyper-optimized using cross-validation over an
appropriate grid of hyper-parameters, see Appendix 8.3 for further details. Subsequently, we train
each algorithm with optimal hyper-parameters 10 times over to account for the methods’ random-
ness (most procedures appear to be quite stable across runs) and we finally report in Figure 3 the
median accuracy obtained on a 15% test-set (y-axis) for each data set, corruption level (x-axis)
and algorithm.
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Figure 3: Test accuracy (y-axis) against the proportion of corrupted samples (x-axis) for six data
sets and the considered algorithms.

First, we note that better optima can sometimes be found using CGD over GD as can be
seen by comparing ERM and ERM CGD on the gas and statlog data sets with zero corruption. This
is also apparent when corruption is present through the fact that CH often outperforms CH GD.
Unsurprisingly, the accuracy of algorithms deteriorates with increasing corruption. In particular,
fast degradations occur for ERM and HUBER which are not intended to handle corrupted covariates.
The best performances are generally achieved by TM and MOM which only lose a minimal fraction
of their accuracy to corruption. Although CH has no theoretical guarantees against corruption,
we see that it is fairly robust on many data sets, especially at low corruption rates. However,
its performance inevitably degrades beyond 20% corruption. The most competitive baseline is
GMOM which manages to match the performance of TM and MOM on certain instances but seems to
generally lag behind as a GD based algorithm. Finally, LLM fails to provide a competitive baseline
in most cases and suffers from unsteady performance across data sets.

In order to illustrate the computational performance of each method, we report in Figure 4
the test accuracy (y-axis) against the training time (x-axis) along iterations of each algorithm for
two data sets (rows) and 0%, 15% and 30% corruption (resp. first, middle and last column).
In all situations, standard methods such as ERM and HUBER run the fastest due to the absence of
computational overhead. However, they only reach poor quality optima when data is corrupted
as opposed to robust methods. The results of Figure 4 concur with Figure 1 showing MOM to
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Figure 4: Test accuracy (y-axis) against computation time (x-axis) along training iterations on
two data sets (rows) for 0% corruption (first column), 15% corruption (middle column) and 30%
corruption (last column). Note the log scale on the x-axis.

be the fastest and CH the slowest CGD algorithm. We also observe that MOM and TM are clear
favourites in terms of final performance and convergence speed, especially when corruption is
present. Unsurprisingly, we observe that the combination of GD with the Catoni-Holland estimator
in CH GD results in the slowest method in most cases. In comparison, GMOM is a faster alternative
whose speed varies between data sets. This may be explained by the varying number of features
and distribution of the data sets affecting the vector median computations. Finally, we see that
although LLM is among the fastest methods (as seen for 0% corruption), its iteration lacks stability
and is visibly affected by corruption.

6.4 Regression on real data sets

We consider the same experimental setting (data corruption and hyper-optimization of algorithms)
as in Section 6.3 on regression data sets from the UCI Machine Learning Database, see Ap-
pendix 8.3 for details. We use the square loss for training and the mean squared error (MSE)
as test metric, except for HUBER, RANSAC and LAD which are trained differently. We report the re-
sults in Figures 5 and 6. Figure 5 shows the test MSE (y-axis) against the corruption rate (x-axis)
for several data sets and algorithms while Figure 6 displays the test MSE against the training time
analogously to Figure 4. Note that only final performance and total training time are shown for
RANSAC, HUBER and LAD on Figure 6. This is because they were run using scikit-learn’s
implementation which does not give access to training history. We observe on Figure 5 that HUBER
and LAD often achieve similar performance as they both optimize `1 objectives. However, HUBER
finds more precise optima in many cases at low corruption rates. This may be attributed to the
quadratic nature of its loss function around zero. Poor performance at low corruption levels is also
observed for RANSAC in most cases. The latter appears to be somewhat resilient to corruption, suf-
fering limited performance degradation at increasing levels. However, like LLM, RANSAC displays
fluctuating and non competitive results. While CH turns out to be especially fragile to corruption
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Figure 5: Mean squared error (y-axis) against the proportion of corrupted samples (x-axis) for six
data sets and the considered algorithms.

on the regression task, the other CGD algorithms TM and MOM generally secure the best scores.
Close competition and sometimes improved performance is shown by HG and GMOM which prove
to effectively filter out corruption, although GMOM seems less reliable at higher levels. Furthermore,
Figure 6 shows that the robustness of HG and GMOM comes at a significantly higher computational
price, especially for HG whose running time is slower by orders of magnitude on some data sets
and outright prohibitive on others.

As for the remaining algorithms, Figure 6 again shows fast convergence for CGD methods
with good final performances for MOM and TM. The iteration of LLM is similarly swift but severely
destabilized by corruption. Finally, LAD, HUBER and RANSAC sometimes offer short runtimes but
lack robustness to corruption.

Our numerical experiments confirm that robust CGD algorithms (TM and MOM) offer a good
compromise between statistical accuracy, robustness and computational cost.

7 Conclusion

In this paper, we introduce new robust algorithms for supervised learning by combining CGD with
several robust partial derivative estimators. We derive convergence results for several variants of
CGD with noisy partial derivatives and prove deviation bounds for all the considered estimators
under minimal moment assumptions, including cases with infinite variance and the presence of
arbitrary outliers (except for the CH estimator). This leads to very robust learning algorithms, with
a numerical cost comparable to that of non-robust approaches based on empirical risk minimiza-
tion, since it lets us bypass the need of a robust vector mean and allows to update model weights
immediately using a robust estimator of a single partial derivative only. This is substantiated by
our numerical experiments which illustrate the good compromise offered by our approach between
statistical accuracy, robustness and computational cost. Perspectives include robust learning algo-
rithms in high dimension, achieving sparsity-aware generalization bounds, which is beyond the
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Figure 6: Mean squared error (y-axis) against computation time (x-axis) along training iterations
on two data sets (rows) for 0% corruption (first column), 15% corruption (middle column) and
30% corruption (last column).

scope of this paper, since it would require different algorithms based on methods such as mirror
descent with an appropriately chosen divergence, see for instance [95, 59].
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8 Supplementary theoretical results and details on experiments

8.1 The Lipschitz constants Lj are unknown

The step-sizes (βj)j∈JdK used in Theorems 1 and 2 are given by βj = 1/Lj , where the Lipschitz
constants Lj are defined by (8). This makes them non-observable, since they depend on the un-
known distribution of the non-corrupted features PXi for i ∈ I. We cannot use line-search [3]
here, since it requires to evaluate the objective R(θ), which is unknown as well. In order to pro-
vide theoretical guarantees similar to that of Theorem 1 without knowing (Lj)

d
j=1, we use the

following approach. First, we use the upper bound

Uj := γE
[
(Xj)2

]
≥ Lj , (26)

which holds under Assumption 1 and estimate E[(Xj)2] to build a robust estimator of Uj . In
order to obtain an observable upper bound and to control its deviation with a large probability, we
introduce the following condition.

Definition 2. We say that a real random variable Z satisfies the Lζ-Lξ condition with constant
C ≥ 1 whenever it satisfies(

E
[
|Z − EZ|ζ

])1/ζ ≤ C(E[|Z − EZ|ξ
])1/ξ

. (27)

Using this condition, we can use the MOM estimator to obtain a high probability upper bound
on E[(Xj)2] as stated in the following lemma.

Lemma 5. Grant Assumption 2 with α ∈ (0, 1] and suppose that for all j ∈ JdK, the variable
(Xj)2 satisfies the L(1+α)-L1 condition with a known constant C. For any fixed j ∈ JdK, let σ̂2

j

be the MOM estimator of E[(Xj)2] with K blocks. If |O| ≤ K/12, we have

P
[(

1− 121/(1+α)C
(K
n

)α/(1+α))−1
σ̂2
j ≤ E[(Xj)2]

]
≤ exp(−K/18).

If we fix a confidence level δ ∈ (0, 1) and choose K := d18 log(1/δ)e, we have(
1− 2161/(1+α)C

( log(1/δ)

n

)α/(1+α))−1
σ̂2
j > E[(Xj)2]

with a probability larger than 1− δ.

The proof of Lemma 5 is given in Appendix 9. Denoting Ûj the upper bounds it provides on
E[(Xj)2], we can readily bound the Lipschitz constants as Lj ≤ γÛj which leads to the following
statement.

Corollary 2. Grant the same assumptions as in Theorem 1 and Proposition 1. Suppose addi-
tionally that for all j ∈ JdK, the variable (Xj)2 satisfies the L(1+α)-L1 condition with a known
constant C and fix δ ∈ (0, 1). Let θ(T ) be the output of Algorithm 1 with step-sizes β̂j = 1/Lj
where Lj := γÛj and Ûj are the upper bounds from Lemma 5 with confidence δ/2d, an initial
iterate θ(0), importance sampling distribution pj = Lj/

∑
k∈JdK Lk and estimators of the partial

derivatives with error vector ε(·). Then, we have

E
[
R(θ(T ))]−R? ≤ (R(θ(0))−R?)

(
1− λ∑

j∈JdK Lj

)T
+

1

2λ

∥∥ε(δ/2)
∥∥2

2
(28)

with probability at least 1− δ.
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The proof of Corollary 2 is given in Appendix 9. It is a direct consequence of Theorem 1
and Lemma 5 and shows that an upper bound similar to that of Theorem 1 can be achieved with
observable step-sizes. One may argue that the L(1+α)-L1 condition simply bypasses the diffi-
culty of deriving an observable upper bound by arbitrarily assuming that a ratio of moments is
observed. However, we point out that a hypothesis of this nature is indispensable to obtain bounds
such as the one above (alternatively, consider a real random variable with an infinitesimal mass
drifting towards infinity). In fact, the L(1+α)-L1 condition is much weaker than the requirement
of boundedness (with known range) common to most known empirical bounds [81, 4, 85].

8.2 Observable upper bound for the moment mα,j

Since the moment mα,j , it is not observable, so we propose in Lemma 6 below an observable
upper bound deviation for it based on MOM. Let us introduce now a robust estimator m̂MOM

α,j (θ) of
the unknown moment mα,j(θ) using the following “two-step” MOM procedure. First, we compute
ĝMOMj (θ), the MOM estimator of gj(θ) with K blocks given by (14). Then, we compute again a MOM
estimator on |gij(θ)− ĝMOMj (θ)|1+α for i ∈ JnK, namely

m̂MOM
α,j (θ) := median

(
m̂

(1)
α,j(θ), . . . , m̂

(K)
α,j (θ)

)
, (29)

where
m̂

(k)
α,j(θ) :=

1

|Bk|
∑
i∈Bk

∣∣gij(θ)− ĝMOMj (θ)
∣∣1+α

,

using uniformly sampled blocks B1, . . . , BK of equal size that form a partition of JnK.

Lemma 6. Grant Assumptions 1 and 2 with α ∈ (0, 1] and suppose that for all j ∈ JdK and θ ∈ Θ
the partial derivatives `′(X>θ, Y )Xj satisfy the L(1+α)2-L(1+α) condition with known constant
C for any j ∈ JdK (see Definition 2). Then, if |O| ≤ K/12, we have

P
[
m̂MOM
α,j (θ) ≤ (1− κ)mα,j(θ)

]
≤ 2 exp(−K/18)

where κ = ε+ 24(1 + α)
( (1+ε)K

n

)α/(1+α) and ε = (24(1 + C(1+α)2))1/(1+α)
(
K
n )α/(1+α).

The proof of Lemma 6 is given in Appendix 9.

8.3 Experimental details

We provide in this section supplementary information about the numerical experiments conducted
in Section 6.

8.3.1 Data sets

The main characteristics of the data sets used from the UCI repository are given in Table 3 and
their direct URLs are given in Table 4.

8.3.2 Data corruption

For a given corruption rate η, we obtain a corrupted version of a data set by replacing an η-fraction
of its samples with uninformative elements. For a data set of size n we choose O ⊂ JnK which
satisfies |O| = ηn up to integer rounding. The corruption is applied prior to any preprocessing
except in the regression case where label scaling is applied before. The affected subset is chosen
uniformly at random. Since many data sets contain both continuous and categorical data features,
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Data set # Samples # Features # Categorical # Classes
statlog 6,435 36 0 6
spambase 4,601 57 0 2
electrical 10,000 13 0 2
occupancy [14] 20,560 5 0 2
gas [104] 13,910 128 0 6
drybean [63] 13,611 16 0 7
energy [15] 19,735 27 0 -
bike [36] 17,379 10 5 -
metro 48,204 6 1 -
sgemm [5] 241,600 14 0 -
ovctt 68,784 20 2 -
californiahousing 20,640 8 0 -

Table 3: Main characteristics of the data sets used in experiments, including number of samples,
number of features, number of categorical features and number of classes.

we distinguish two different corruption mechanisms which we apply depending on their nature.
The labels are corrupted as continuous or categorical values when the task is respectively regres-
sion or classification. Denote X̃ ∈ Rn×(d+1) the data matrix with the vector of labels added to its
columns. Let J̃ ⊂ Jd + 1K denote the index of continuous columns, we compute µ̂j and σ̂j their
empirical means and standard deviations respectively for j ∈ J̃ . We also sample a random unit
vector u of size |J̃ |.

• For categorical feature columns, for each corrupted index i ∈ O, we replace Xi,j with a uni-
formly sampled value among {X•,j} i.e. among the possible modalities of the categorical
feature in question.

• For continuous features, for each corrupted index i ∈ O, we replace X
i,J̃

with equal prob-
ability with one of the following possibilities:

– a vector ξ sampled coordinatewise according to ξj = rj + 5σ̂jν where rj is a value
randomly picked in the column X•,j and ν is a sample from the Student distribution
with 2.1 degrees of freedom.

– a vector ξ sampled coordinatewise according to ξj = µ̂j + 5σ̂juj + z where z is a
standard gaussian.

– a vector ξ sampled according to ξ = µ̂+ 5σ̂⊗w where w is a uniformly sampled unit
vector.

8.4 Preprocessing

We apply a minimal amount of preprocessing to the data before applying the considered learning
algorithms. More precisely, categorical features are one-hot encoded while centering and standard
scaling is applied to the continuous features.

8.5 Parameter hyper-optimization

We use the hyperopt library to find optimal hyper-parameters for all algorithms. For each
data set, the available samples are split into training, validation and test sets with proportions
70%, 15%, 15%. Whenever corruption is applied, it is restricted to the training set. We run 50
rounds of hyper-parameter optimization which are trained on the training set and evaluated on the
validation set. Then, we report results on the test set for all hyper-optimized algorithms. For each
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Table 4: The URLs of all the data sets used in the paper, giving direct download links and supple-
mentary details.
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algorithm, the hyper-parameters are tried out using the following sampling mechanism (the one
we specify to hyperopt):

• MOM, GMOM, LLM: we optimize the number of blocks K used for the median-of-means com-
putations. This is done through a block size = K/n hyper-parameter chosen with log-
uniform distribution over [10−5, 0.2]

• CH and CH GD: we optimize the confidence δ used to define the CH estimator’s scale parameter
(see Equation (21)) chosen with log-uniform distribution over [e−10, 1]

• TM, HG: we optimize the percentage used for trimming uniformly in [10−5, 0.3]

• RANSAC: we optimize the value of the min samples parameter in the scikit-learn imple-
mentation, chosen as 4 +m with m an integer chosen uniformly in J100K

• HUBER: we optimize the epsilon parameter in the scikit-learn implementation chosen
uniformly in [1.0, 2.5]

9 Proofs

9.1 Proof of Theorem 1

This proof follows, with minor modifications, the proof of Theorem 1 from [105]. Using Defini-
tion 1 , we obtain

P[E ] ≥ 1− δ where E :=
{
∀j ∈ JdK, ∀t ∈ [T ],

∣∣ĝj(θ(t))− gj(θ(t))
∣∣ ≤ εj(δ)}. (30)

Let us recall that ej stands for the j-th canonical basis of Rd and that, as described in Algorithm 1,
we have

θ(t+1) = θ(t) − βjt ĝtejt ,

where we use the notations ĝt = ĝjt(θ
(t)) and gt = gjt(θ

(t)) and where we recall that j1, . . . , jt
is a i.i.d sequence with distribution p. We introduce also εj := εj(δ). Using Assumption 3, we
obtain

R(θ(t+1)) = R
(
θ(t) − βjt ĝtejt

)
≤ R(θ(t))−

〈
g(θ(t)), βjt ĝtejt

〉
+
Ljt
2
β2
jt ĝ

2
t

= R(θ(t))− βjtg2
t − βjtgt(ĝt−gt) +

Ljtβ
2
jt

2

(
g2
t + (ĝt−gt)2 + 2gt(ĝt−gt)

)
= R(θ(t))− βjtgt(1−Ljtβjt)(ĝt−gt)−βjt

(
1−Ljtβjt

2

)
g2
t +

Ljtβ
2
jt

2
(ĝt−gt)2

= R(θ(t))− 1

2Ljt
g2
t +

1

2Ljt
(ĝt − gt)2

≤ R(θ(t))− 1

2Ljt
g2
t +

ε2jt
2Ljt

(31)

on the event E , where we used the choice βjt = 1/Ljt and the fact that |ĝt − gt| ≤ εjt on E .
Since j1, . . . , jt is a i.i.d sequence with distribution p, we have for any (j1, . . . , jt−1)-measurable

and integrable function ϕ that

Et−1

[
ϕ(jt)

]
=
∑
j∈JdK

ϕ(j)pj ,
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where we denote for short the conditional expectation Et−1[·] = Et−1[·|j1, . . . , jt−1]. So, taking
Et−1[·] on both sides of (31) leads, whenever pj = Lj/

∑d
k=1 Lk, to

Et−1

[
R(θ(t+1))

]
≤ R(θ(t))− 1

2
∑

k Lk

∥∥g(θ(t))
∥∥2

+
1

2
∑

k Lk
Ξ,

where we introduced Ξ := ‖ε(δ)‖22, while it leads to

Et−1

[
R(θ(t+1))

]
≤ R(θ(t))− 1

2Lmaxd

∥∥g(θ(t))
∥∥2

+
1

2dLmin
Ξ

whenever pj = 1/d, simply using Lmin ≤ Lj ≤ Lmax. In order to treat both cases simultaneously,
consider L̄ =

∑
k=1 Lk and ε̄ = Ξ/(2

∑
k Lk) whenever pj = Lj/

∑d
k=1 Lk and L̄ = dLmax and

ε̄/(2dLmin) whenever pj = 1/d and continue from the inequality

Et−1

[
R(θ(t+1))

]
≤ R(θ(t))− 1

2L̄

∥∥g(θ(t))
∥∥2

+ ε̄.

Introducing φt := E
[
R(θ(t))

]
−R? and taking the expectation w.r.t. all j1, . . . , jt we obtain

φt+1 ≤ φt −
1

2L̄
E
∥∥g(θ(t))

∥∥2
+ ε̄. (32)

Using Inequality (9) with θ1 = θ(t) gives

R(θ2) ≥ R(θ(t)) +
〈
∇R(θ(t)), θ2 − θ(t)

〉
+
λ

2

∥∥θ2 − θ(t)
∥∥2

for any θ2 ∈ Rd, so that by minimizing both sides with respect to θ2 leads to

R? ≥ R(θ(t))− 1

2λ

∥∥g(θ(t))
∥∥2

namely

φt ≤
1

2λ
E
∥∥g(θ(t))

∥∥2
,

by taking the expectation on both sides. Together with (32) this leads to the following approximate
contraction property:

φt+1 ≤ φt
(

1− λ

L̄

)
+ ε̄,

and by iterating t = 1, . . . , T to

φT ≤ φ0

(
1− λ

L̄

)T
+
ε̄L̄

λ
,

which allows to conclude the Proof of Theorem 1. �

9.2 Proof of Theorem 2

This proof reuses ideas from [73] and [7] and adapts them to our context where the gradient
coordinates are replaced with high confidence approximations. Without loss of generality, we
initially assume that the coordinates are cycled upon in the natural order. We condition on the
event (30) which holds with probability≥ 1−δ as in the proof of Theorem 1 and denote εj = εj(δ)
and εEuc = ‖ε(δ)‖.
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Let the iterations be denoted as θ(t) for t = 0, . . . , T and θ(t)
i+1 = θ

(t)
i −βi+1ĝ(θ

(t)
i )i+1ei+1 for

i = 0, . . . , d− 1 with βi = 1/Li, θ
(t)
0 = θ(t) and θ(t)

d = θ(t+1). With these notations we have

R(θ(t))−R(θ(t+1)) =
d−1∑
i=0

R(θ
(t)
i )−R(θ

(t)
i+1).

Similarly to (31) in the proof of Theorem 1 we find:

R(θ
(t)
i )−R(θ

(t)
i+1) ≥ 1

2Li+1

(
g(θ

(t)
i )2

i+1 − ε2i+1

)
,

leading to

R(θ(t))−R(θ(t+1)) ≥
d−1∑
i=0

1

2Li+1
g(θ

(t)
i )2

i+1 −
1

2Lmin

d−1∑
i=0

ε2i+1. (33)

The following aims to find a relationship between
∑d−1

i=0
1

2Li+1
g(θ

(t)
i )2

i+1 and
∥∥g(θ(t))‖22 which we

do by comparing coordinates. For the first step in a cycle we have g(θ(t))1 = g(θ
(t)
0 )1 because

θ(t) = θ
(t)
0 . Let j ∈ {1, . . . , d− 1}, by the Mean Value Theorem, there exists γ(t)

j ∈ Rd such that
we have:

g(θ(t))j+1 = g(θ(t))j+1 − g(θ
(t)
j )j+1 + g(θ

(t)
j )j+1

=
(
∇gj+1(γ

(t)
j )
)>(

θ(t) − θ(t)
j

)
+ g(θ

(t)
j )j+1

=

[
∂R(γ

(t)
j )

∂j+1∂1
, . . . ,

∂R(γ
(t)
j )

∂j+1∂j
, 0, . . . , 0

][
(θ(t) − θ(t)

j )1, . . . , (θ
(t) − θ(t)

j )j , 0, . . . , 0
]>

+ g(θ
(t)
j )j+1

= [Hj+1,1, . . . ,Hj+1,j , 0, . . . , 0]

[
ĝ1(θ

(t)
0 )

L1
, . . . ,

ĝj(θ
(t)
j−1)

Lj
, 0, . . . , 0

]>
+ g(θ

(t)
j )j+1

= [Hj+1,1, . . . ,Hj+1,j , 0, . . . , 0]

[
g1(θ

(t)
0 ) + δ

(t)
1

L1
, . . . ,

gj(θ
(t)
j−1) + δ

(t)
j

Lj
, 0, . . . , 0

]>
+ g(θ

(t)
j )j+1

=

[
Hj+1,1√
L1

, . . . ,
Hj+1,j√

Lj
,
√
Lj+1, 0, . . . , 0

]
︸ ︷︷ ︸

h̃>j+1

[
g1(θ

(t)
0 )√
L1

, . . . ,
gd(θ

(t)
d−1)
√
Ld

]>
︸ ︷︷ ︸

g̃t

+ [Hj+1,1, . . . ,Hj+1,j , 0, . . . , 0]︸ ︷︷ ︸
h>j+1

[
δ

(t)
1

L1
, . . . ,

δ
(t)
d

Ld

]>

= h̃j+1g̃t + hj+1A
−1δ(t),

where we introduced the following quantities: A ∈ Rd equal to A = diag(Lj)
d
j=1, the vector

δ(t) ∈ Rd is such that δ(t)
j = ĝ(θ

(t)
j−1)j − g(θ

(t)
j−1)j which satisfies |δ(t)

j | ≤ εj , the matrix H =

(h1, . . . , hd)
> and H̃ = A1/2+HA−1/2 = (h̃1, . . . , h̃d)

>. In the case j = 0 the vector hj+1 = h1
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is simply zero. This allows us to obtain the following estimation:

∥∥g(θ(t))
∥∥2

=

d∑
j=1

g(θ(t))2
j =

d∑
j=1

(h̃>j g̃t + h>j A
−1δ(t))2

≤
d∑
j=1

2(h̃>j g̃t)
2 + 2(h>j A

−1δ(t))2 = 2
∥∥H̃g̃t∥∥2

+ 2
∥∥HA−1δ(t)

∥∥2

≤ 2
∥∥H̃∥∥2∥∥g̃t∥∥2

+
2

L2
min

‖H‖2ε2Euc

= 2‖H̃‖2
d−1∑
i=0

1

Li+1
g(θ

(t)
i )2

i+1 +
2

L2
min

‖H‖2ε2Euc. (34)

We can bound the spectral norm ‖H̃‖ as follows:

‖H̃‖2 = ‖A1/2 +HA−1/2‖2 ≤ 2‖A1/22
+ 2‖HA−1/2‖2 ≤ 2

(
Lmax +

‖H‖2

Lmin

)
.

For ‖H‖, we use the coordinate-wise Lipschitz-smoothness in order to find

‖H‖2 ≤ ‖H‖2F =
d∑
j=1

‖hj‖2 ≤
d∑
j=1

∥∥∇gj(γ(t)
j−1)

∥∥2 ≤
d∑
j=1

L2
j ≤ dL2

max.

Combining the previous inequality with (33) and (34), we find:

R(θ(t))−R(θ(t+1))

≥ 1

8Lmax(1 + dLmax
Lmin

)

∥∥g(θ(t))
∥∥2 −

ε2Euc
2

(
(

1

Lmin
+

d
(
Lmax
Lmin

)2

2Lmax(1 + dLmax
Lmin

)

)
≥ 1

8Lmax(1 + dLmax
Lmin

)

∥∥g(θ(t))
∥∥2 −

ε2Euc
2

( 1

Lmin
+

1

2Lmin

dLmax/Lmin

1 + dLmax
Lmin

)
≥ 1

8Lmax(1 + dLmax
Lmin

)︸ ︷︷ ︸
=:κ

∥∥g(θ(t))
∥∥2 − 3

4Lmin
ε2Euc,

where the last step uses that dLmax/Lmin

1+dLmax
Lmin

≤ 1. Using λ-strong convexity by choosing θ1 = θ(t) in

inequality (9) and minimizing both sides w.r.t. θ2 we obtain:

R(θ(t))−R? ≤ 1

2λ
‖g(θ(t))‖2,

which combined with the previous inequality yields the contraction inequality:

R(θ(t+1))−R? ≤ (R(θ(t))−R?)(1− 2λκ) +
3

4Lmin
ε2Euc,

and after T iterations we have:

R(θ(T ))−R? ≤ (R(θ(0))−R?)(1− 2λκ)T +
3ε2Euc

8Lminλκ
,

which concludes the proof of Theorem 2. To see that the proof still holds for any choice of
coordinates satisfying the conditions in the main claim, notice that the computations leading up to
Inequality (34) work all the same if one were to apply a permutation to the coordinates beforehand.
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9.3 Convergence of the parameter error

We state and prove a result about the linear convergence of the parameter under strong convexity.

Theorem 4. Grant Assumptions 1, 3 and 4. Let θ(T ) be the output of Algorithm 1 with constant
step-size β = 2

λ+L , an initial iterate θ(0), uniform coordinates sampling pj = 1/d and estimators
of the partial derivatives with error vector ε(·). Then, we have

E
∥∥θ(T ) − θ?

∥∥
2
≤
∥∥θ(0) − θ?

∥∥
2

(
1− 2βλL

d(λ+ L)

)T
+

√
d(λ+ L)

λL

∥∥ε(δ)∥∥
2

(35)

with probability at least 1− δ, where the expectation is w.r.t. the sampling of the coordinates.

Proof. As in the proof of Theorem 1, let (ĝj(θ))
d
j=1 be the estimators used and introduce the

notations
ĝt = ĝjt(θ

(t)) and gt = gjt(θ
(t)).

We also condition on the event (30) which holds with probability 1 − δ and use the notations
εEuc = ‖ε(δ)‖2 and εj = εj(δ). We denote ‖ · ‖L2 the L2-norm w.r.t. the distribution over jt i.e.
for a random variable ξ we have ‖ξ‖L2 =

√
Ejt‖ξ‖2. We compute:∥∥θ(t+1)−θ?

∥∥
L2

=
∥∥θ(t)−βjt ĝtejt−θ?

∥∥
L2
≤
∥∥θ(t)−βjtgtejt−θ?

∥∥
L2

+
∥∥βjt(ĝt−gt)∥∥L2

. (36)

We first treat the first term of (36), in the case of uniform sampling with equal step-sizes βj = β
we have: ∥∥θ(t) − βgtejt − θ?

∥∥2
=
∥∥θ(t) − θ?

∥∥2
+ β2g2

t − 2β
〈
gtejt , θ

(t) − θ?
〉
.

By taking the expectation w.r.t. the random coordinate jt we find:∥∥θ(t) − βgtejt − θ?
∥∥2

L2
= E

∥∥θ(t) − βgtejt − θ?
∥∥2

= E
∥∥θ(t) − θ?

∥∥2
+
β2

d
E
∥∥g(θ(t))

∥∥2 − 2
β

d
E
〈
g(θ(t)), θ(t) − θ?

〉
= E‖θ(t)−θ?‖2+

(β
d

)2
E‖g(θ(t))‖2 − 2

β

d
E
〈
g(θ(t)), θ(t)−θ?

〉
+
β2

d
E
∥∥g(θ(t))

∥∥2
(

1− 1

d

)
≤ E

∥∥θ(t)−θ?
∥∥2
(

1− 2βλL

d(λ+ L)

)
+
β

d

(β
d
− 2

λ+ L

)
E
∥∥g(θ(t))

∥∥2
+
β2

d
E
∥∥g(θ(t))

∥∥2
(

1− 1

d

)
= E

∥∥θ(t) − θ?
∥∥2
(

1− 2βλL

d(λ+ L)

)
+
β

d

(
β − 2

λ+ L

)
E
∥∥g(θ(t))

∥∥2

≤ E
∥∥θ(t) − θ?

∥∥2
(

1− 2βλL

d(λ+ L)

)
︸ ︷︷ ︸

=:κ2

.

The first inequality is obtained by applying inequality (2.1.24) from [87] (see also [12] Lemma
3.11) and the second one is due to the choice of β. We can bound the second term as follows:

∥∥ĝt − gt∥∥2

L2
= Ejt

∣∣ĝt − gt∣∣2 =
1

d

d∑
j=1

∣∣ĝj(θ(t))− gj(θ(t))
∣∣2 ≤ ε2Euc

d
.

Combining the latter with the former bound, we obtain the approximate contraction:∥∥θ(t+1) − θ?
∥∥
L2
≤ κ

∥∥θ(t) − θ?
∥∥
L2

+
βεEuc√

d
.
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By iterating this argument on T rounds we find that:∥∥θ(T ) − θ?
∥∥
L2
≤ κT

∥∥θ(0) − θ?
∥∥
L2

+
βεEuc√
d(1− κ)

.

Finally, the following inequality yields the result in the case of uniform sampling:

1

1− κ
≤

1 +
√

1− 2βλL
d(λ+L)

2βλL
d(λ+L)

≤ d(λ+ L)

βλL
.

9.4 Proof of Lemma 1

Let θ ∈ Θ, using Assumption 1 we have:

|`(θ>X,Y )| ≤ C`,1 + C`,2|θ>X − Y |q ≤ C`,1 + 2q−1C`,2(|θ>X|q + |Y |q).

Taking the expectation and using Assumption 2 shows that the risk R(θ) is well defined (recall
that q ≤ 2). Next, since 1 ≤ q ≤ 2, simple algebra gives∣∣`′(θ>X,Y )Xj

∣∣1+α

≤
∣∣(C ′`,1 + C ′`,2|θ>X − Y |q−1

)
Xj
∣∣1+α

≤ 2α
(∣∣C ′`,1Xj

∣∣1+α
+ (C ′`,2(|(θ>X)q−1Xj |+ |Y q−1Xj |))1+α

)
≤ 2α

(∣∣C ′`,1Xj
∣∣1+α

+
(
C ′`,2

( d∑
k=1

|θk|q−1|(Xk)q−1Xj |+ |Y q−1Xj |
))1+α)

≤ 2α
(∣∣C ′`,1Xj

∣∣1+α

+ 2α(C ′`,2)1+α
(
dα

d∑
k=1

|θk|(q−1)(1+α)|(Xk)q−1Xj |1+α + |Y q−1Xj |1+α
))
.

Given Assumption 2, it is straightforward that E|Xj
∣∣1+α

< ∞ and E|Y q−1Xj |1+α < ∞. More-
over, using a Hölder inequality with exponents a = q(1+α)

(q−1)(1+α) and b = q (the case q = 1 is trivial)
we find:

E
∣∣(Xk)q−1Xj

∣∣1+α ≤
(
E
∣∣Xk

∣∣q(1+α))1/a(E∣∣Xj
∣∣q(1+α))1/b

,

which is finite under Assumption 2. This concludes the proof of Lemma 1.

9.5 Proof of Lemma 2

This proof follows a standard argument from [77, 42] in which we use a Lemma from [13] in order
to control the (1+α)-moment of the block means instead of their variance. Indeed, we know from
Lemma 1 that under Assumptions 1 and 2, the gradient coordinates have finite (1 + α)-moments,
namely E[|`′(X>θ, Y )Xj |1+α] < +∞ for any j ∈ JdK. Recall that (ĝ

(k)
j (θ))k∈JKK stands for the

block-wise empirical mean given by Equation (15) and introduce the set of non-corrupted block
indices given by K = {k ∈ JKK : Bk ∩ O = ∅}. We will initially assume that the number of
outliers satisfies |O| ≤ (1 − ε)K/2 for some 0 < ε < 1. Note that since samples are i.i.d in Bk
for k ∈ K, we have E

[
ĝ

(k)
j (θ)

]
= gj(θ). We use the following Lemma from [13].

36



Lemma 7 (Lemma 3 from [13]). Let Z,Z1, . . . , Zn be a i.i.d sequence with mα = E[|Z −
EZ|1+α] < +∞ for some α ∈ (0, 1] and put Z̄n = 1

n

∑
i∈JnK Zi. Then, we have

Z̄n ≤ EZ +
(3mα

δnα

)1/(1+α)

for any δ ∈ (0, 1), with a probability 1− δ.

Lemma 7 entails that∣∣ĝ(k)
j (θ)− gj(θ)

∣∣ ≤ ( 3mj,α(θ)

δ′(n/K)α

)1/(1+α)
=: ηj,α,δ′(θ)

with probability larger than 1 − 2δ′, for each k ∈ K, since we have n/K samples in block Bk.
Now, recalling that ĝj(θ) is the median (see (14)), we can upper bound its failure probability as
follows:

P
[∣∣ĝMOMj (θ)− gj(θ)

∣∣ ≥ ηj,α,δ′(θ)]
≤ P

[ ∑
k∈JKK

1
{∣∣ĝ(k)

j (θ)− gj(θ)
∣∣ ≥ ηj,α,δ′(θ)} > K/2

]

≤ P
[∑
k∈K

1
{∣∣ĝ(k)

j (θ)− gj(θ)
∣∣ ≥ ηj,α,δ′(θ)} > K/2− |O|

]
,

since at most |O| blocks contain one outlier. Since the blocks Bk are disjoint and contain i.i.d
samples for k ∈ K, we know that∑

k∈K
1
{∣∣ĝ(k)

j (θ)− gj(θ)
∣∣ ≥ ηj,α,δ′(θ)}

follows a binomial distribution Bin(|K|, p) with p ≤ 2δ′. Using the fact that Bin(|K|, p) is
stochastically dominated by Bin(|K|, 2δ′) and that E[Bin(|K|, 2δ′)] = 2δ′|K|, we obtain, if S ∼
Bin(|K|, 2δ′), that

P
[∣∣ĝMOMj (θ)− gj(θ)

∣∣ ≥ ηj,α,δ′(θ)] ≤ P
[
S > K/2− |O|

]
= P

[
S − ES > K/2− |O| − 2δ′|K|

]
≤ P

[
S − ES > K(ε− 4δ′)/2

]
≤ exp

(
−K(ε− 4δ′)2/2

)
,

where we used the fact that |O| ≤ (1 − ε)K/2 and |K| ≤ K for the second inequality and the
Hoeffding inequality for the last. This concludes the proof of Lemma 2 for the choice ε = 5/6
and δ′ = 1/8.

9.6 Proof of Proposition 1

Step 1. First, we fix θ ∈ Θ and try to bound
∣∣ĝMOMj (θ) − gj(θ)

∣∣ in terms of quantities only
depending on θ̃ which is the closest point to θ in an ε-net. Recall that ∆ is the diameter of the
parameter set Θ and let ε > 0 be a positive number. There exists an ε-net covering Θ with
cardinality no more than (3∆/2ε)d i.e. a set Nε such that for all θ ∈ Θ there exists θ̃ ∈ Nε

such that ‖θ̃ − θ‖ ≤ ε. Consider a fixed θ ∈ Θ and j ∈ JdK, we wish to bound the quantity
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∣∣ĝMOMj (θ) − gj(θ)
∣∣. Using the ε-net Nε, there exists θ̃ such that ‖θ̃ − θ‖ ≤ ε which we can use as

follows: ∣∣ĝMOMj (θ)− gj(θ)
∣∣ ≤ ∣∣ĝMOMj (θ)− gj(θ̃)

∣∣+
∣∣gj(θ̃)− gj(θ)∣∣

≤
∣∣ĝMOMj (θ)− gj(θ̃)

∣∣+ Ljε, (37)

where we used the gradient’s coordinate Lipschitz constant to bound the second term. We now
focus on the second term. Introducing the notation gij(θ) = `′(θ>Xi, Yi)X

j
i , we have

gij(θ) = `′(θ̃>Xi, Yi)X
j
i + (`′(θ>Xi, Yi)− `′(θ̃>Xi, Yi))X

j
i︸ ︷︷ ︸

=:∆i

.

Let (Bk)k∈JKK be the blocks used to compute the MOM estimator and associated block means

ĝ
(k)
j (θ) and ĝ(k)

j (θ̃). Notice that the MOM estimator is monotonous non decreasing w.r.t. to each
of the entries gij(θ) when the others are fixed. Without loss of generality, assume that ĝMOMj (θ) −
gj(θ̃) ≥ 0 then we have: ∣∣ĝMOMj (θ)− gj(θ̃)

∣∣ ≤ ∣∣qgMOMj (θ̃)− gj(θ̃)
∣∣, (38)

where qgMOMj (θ̃) is the MOM estimator obtained using the entries `′
(
θ̃>Xi, Yi

)
Xj
i + εγ‖Xi‖2 =

gij(θ̃) + εγ‖Xi‖2 instead of gij(θ). Note that qgMOMj (θ̃) no longer depends on θ except through the
fact that θ̃ is chosen in Nε so that

∥∥θ̃− θ∥∥ ≤ ε. Indeed, using the Lipschitz smoothness of the loss
function and a Cauchy-Schwarz inequality we find that:

|∆i| ≤ γ‖θ − θ̃‖ · ‖Xi‖ · |Xj
i | ≤ εγ‖Xi‖2.

Step 2. We now use the concentration property of MOM to bound the quantity which is in terms
of θ̃. The samples (gij(θ̃) + εγ‖Xi‖2)i∈JnK are independent and distributed according to the ran-

dom variable `′(θ̃>X,Y )Xj + εγ‖X‖2. Denote L = γE‖X‖2 and for k ∈ JKK let ĝ(k)
j (θ̃) =

K
n

∑
i∈Bk g

i
j(θ̃) and L̂(k) = K

n

∑
i∈Bk γ‖Xi‖2. We use Lemma 7 for each of these pairs of means

to obtain that with probability at least 1− δ′/2:

∣∣ĝ(k)
j (θ̃)− gj(θ̃)

∣∣ ≤ ( 6mj,α(θ̃)

δ′(n/K)α

)1/(1+α)
=: ηj,α,δ′/2(θ̃),

and with probability at least 1− δ′/2∣∣L̂(k) − L
∣∣ ≤ ( 6mL,α

δ′(n/K)α

)1/(1+α)
=: ηL,α,δ′/2,

where mL,α = E|γ‖X‖2 − L|1+α. Hence for all k ∈ JKK

P
(∣∣ĝ(k)

j (θ̃) + εL̂(k) − gj(θ̃)
∣∣ > ηj,α,δ′/2(θ̃) + ε(L+ ηL,α,δ′/2)

)
≤ P

(∣∣ĝ(k)
j (θ̃)− gj(θ̃)

∣∣ > ηj,α,δ′/2(θ̃)
)

+ P
(∣∣L̂(k) − L

∣∣ > ηL,α,δ′/2
)

≤ δ′/2 + δ′/2 = δ′.

Now defining the Bernoulli variables

Uk := 1
{∣∣ĝ(k)

j (θ̃) + δL̂(k) − gj(θ̃)
∣∣ > ηj,α,δ′/2(θ̃) + ε

(
L+ ηL,α,δ′/2

)}
,
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we have just seen they have success probability ≤ δ′, moreover

P
[∣∣

qgMOMj (θ̃)−gj(θ̃)
∣∣ ≥ ηj,α,δ′/2(θ̃)+ε(L+ ηL,α,δ′/2)

]
≤ P

[ ∑
k∈JKK

Uk > K/2

]

≤ P
[∑
k∈K

Uk>K/2−|O|
]
,

since at most |O| blocks contain one outlier. Since the blocks Bk are disjoint and contain i.i.d
samples for k ∈ K, we know that

∑
k∈K Uk follows a binomial distribution Bin(|K|, p) with

p ≤ δ′. Using the fact that Bin(|K|, p) is stochastically dominated by Bin(|K|, δ′) and that
E[Bin(|K|, δ′)] = δ′|K|, we obtain, if S ∼ Bin(|K|, δ′), that

P
[∣∣

qgMOMj (θ̃)− gj(θ̃)
∣∣ ≥ ηj,α,δ′/2(θ̃) + ε

(
L+ ηL,α,δ′/2

)]
≤ P

[
S > K/2− |O|

]
= P

[
S − ES > K/2− |O| − δ′|K|

]
≤ P

[
S − ES > K(ε′ − 2δ′)/2

]
≤ exp

(
−K(ε′ − 2δ′)2/2

)
,

where we used the condition |O| ≤ (1 − ε′)K/2 and |K| ≤ K for the second inequality and the
Hoeffding inequality for the last. To conclude, we choose ε′ = 5/6 and δ′ = 1/4 and combine
(37), (38) and the last inequality in which we take K = d18 log(1/δ)e and use a union bound
argument to obtain that with probability at least 1− δ for all j ∈ JdK∣∣

qgMOMj (θ̃)− gj(θ̃)
∣∣≤((24mj,α(θ̃))1/(1+α)+ ε(24mL,α)1/(1+α)

)(18 log(d/δ)

n

)α/(1+α)
+ εL. (39)

Step 3. We use the ε-net to obtain a uniform bound. For θ ∈ Θ denote θ̃(θ) ∈ Nε the closest
point in Nε satisfying in particular ‖θ̃(θ)− θ‖ ≤ ε, we write, following previous arguments

sup
θ∈Θ

∣∣ĝMOMj (θ)− gj(θ)
∣∣ ≤ sup

θ∈Θ

∣∣ĝMOMj (θ)− gj(θ̃(θ))
∣∣+
∣∣gj(θ̃(θ))− gj(θ)∣∣

≤ sup
θ∈Θ

∣∣
qgMOMj (θ̃(θ))− gj(θ̃(θ))

∣∣+ εLj

= max
θ̃∈Nε

∣∣
qgMOMj (θ̃)− gj(θ̃)

∣∣+ εLj .

Here, we make a union bound argument over θ̃ ∈ Nε for the inequality (39) and choose ε =
n−α/(1+α) to obtain the final result concluding the proof of Proposition 1.

9.7 Proof of Proposition 2

This proof reuses arguments from the proof of Theorem 2 in [68]. We wish to bound
∣∣ĝMOMj (θ) −

gj(θ)
∣∣ with high probability and uniformly on θ ∈ Θ. Fix θ ∈ Θ and j ∈ JdK, we have ĝMOMj (θ) =

median
(
ĝ

(1)
j (θ), . . . , ĝ

(K)
j (θ)

)
with ĝ

(k)
j (θ) = K

n

∑
i∈Bk g

i
j(θ) where the blocks B1, . . . , BK

constitute a partition of JnK.
Define the function φ(t) = (t − 1)11≤t≤2 + 1t>2, let K = {k ∈ JKK, Bk ∩ O = ∅} and

J =
⋃
k∈KBk. Thanks to the inequality φ(t) ≥ 1t≥2, we have:

sup
θ∈Θ

K∑
k=1

1
{∣∣ĝ(k)

j (θ)− gj(θ)
∣∣ > x

}
≤ sup

θ∈Θ

∑
k∈K

E
[
φ
(
2
∣∣ĝ(k)
j (θ)− gj(θ)

∣∣/x)]+ |O|

+ sup
θ∈Θ

∑
k∈K

(
φ
(
2
∣∣ĝ(k)
j (θ)− gj(θ)

∣∣/x)− E
[
φ
(
2
∣∣ĝ(k)
j (θ)− gj(θ)

∣∣/x)]).
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Besides, the inequality φ(t) ≤ 1t≥1, an application of Markov’s inequality and Lemma 7 yield:

E
[
φ
(
2
∣∣ĝ(k)
j (θ)− gj(θ)

∣∣/x)] ≤ P
(∣∣ĝ(k)

j (θ)− gj(θ)
∣∣ ≥ x/2) ≤ 3mα,j(θ)

(x/2)1+α(n/K)α
.

Therefore, recalling that we defined Mα,j := supθ∈Θmα,j(θ) we have

sup
θ∈Θ

K∑
k=1

1
{∣∣ĝ(k)

j (θ)− gj(θ)
∣∣ > x

}
≤ K

(
3Mα,j

(x/2)1+α(n/K)α
+
|O|
K

+ sup
θ∈Θ

1

K

(∑
k∈K

φ
(
2
∣∣ĝ(k)
j (θ)− gj(θ)

∣∣/x)− E
[
φ
(
2
∣∣ĝ(k)
j (θ)− gj(θ)

∣∣/x)])).
Now since for all t we have 0 ≤ φ(t) ≤ 1, McDiarmid’s inequality says with probability ≥
1− exp(−2y2K) that:

sup
θ∈Θ

1

K

(∑
k∈K

φ
(
2
∣∣ĝ(k)
j (θ)− gj(θ)

∣∣/x)− E
[
φ
(
2
∣∣ĝ(k)
j (θ)− gj(θ)

∣∣/x)]) ≤
E
[

sup
θ∈Θ

1

K

(∑
k∈K

φ
(
2
∣∣ĝ(k)
j (θ)−gj(θ)

∣∣/x)− E
[
φ
(
2
∣∣ĝ(k)
j (θ)−gj(θ)

∣∣/x)])]+ y.

Using a simple symmetrization argument (see for instance Lemma 11.4 in [10]) we find:

E
[

sup
θ∈Θ

1

K

(∑
k∈K

φ
(
2
∣∣ĝ(k)
j (θ)− gj(θ)

∣∣/x)− E
[
φ
(
2
∣∣ĝ(k)
j (θ)− gj(θ)

∣∣/x)])] ≤
2E
[

sup
θ∈Θ

1

K

∑
k∈K

εkφ
(
2
∣∣ĝ(k)(θ)− g(θ)

∣∣/x)],
where the εks are independent Rademacher variables. Since φ is 1-Lipschitz and satisfies φ(0) = 0
we can use the contraction principle (see Theorem 11.6 in [10]) followed by another symmetriza-
tion step to find

2E
[

sup
θ∈Θ

1

K

∑
k∈K

εkφ
(
2
∣∣ĝ(k)
j (θ)−gj(θ)

∣∣/x)]≤4E
[

sup
θ∈Θ

1

K

∑
k∈K

εk
∣∣ĝ(k)
j (θ)−gj(θ)

∣∣/x]
≤ 8

xn
E
[

sup
θ∈Θ

∑
i∈J

εig
i
j(θ)

]
≤ 8Rj(Θ)

xn
.

Taking |O| ≤ (1− ε)K/2, we found that with probability ≥ 1− exp(−2y2K)

sup
θ∈Θ

K∑
k=1

1
{∣∣ĝ(k)

j (θ)− gj(θ)
∣∣ > x

}
≤ K

(
3Mα,j

(x/2)1+α(n/K)α
+
|O|
K

+
8Rj(Θ)

xn

)
.

Now by choosing y = 1/4 − |O|/K and x = max
((

36Mα,j

(n/K)α

)1/(1+α)
,

64Rj(Θ)
n

)
, we obtain the

deviation bound:

P
(

sup
θ∈Θ

∣∣ĝMOMj (θ)− gj(θ)
∣∣ ≥ max

(( 36Mα,j

(n/K)α

)1/(1+α)
,
64Rj(Θ)

n

))
≤ P

(
sup
θ∈Θ

K∑
k=1

1
{∣∣ĝ(k)

j (θ)−gj(θ)
∣∣>x}>K/2)

≤ exp(−2(ε− 1/2)2K/4)

≤ exp(−K/18),
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where the last inequality comes from the choice ε = 5/6. A simple union bound argument lets the
previous inequality hold for all j ∈ JdK with high probability.

Finally, assuming that Xj has finite fourth moment for all j ∈ JdK, we can control the
Rademacher complexity. In this part, we assume without loss of generality that I = JnK, we
first write

Rj(Θ) = E
[

sup
θ∈Θ

n∑
i=1

εi`
′(θ>Xi, Yi)X

j
i

]

= E
[ n∑
i=1

εi`
′(0, Yi)X

j
i + sup

θ∈Θ

n∑
i=1

εi(`
′(θ>Xi, Yi)− `′(0, Yi))Xj

i

]
.

Denote φi(t) = (`′(t, Yi)− `′(0, Yi))Xj
i and notice that E

[∑n
i=1 εi`

′(0, Yi)X
j
i

]
= 0. Notice also

that φi(0) = 0 and φi is γ|Xj
i |-Lipschitz for all i. We use a variant of the contraction principle

adapted to our case in which functions with different Lipschitz constants appear. We use Lemma
11.7 from [10] and adapt the proof of their Theorem 11.6 to make the following estimations:

E
[

sup
θ∈Θ

n∑
i=1

εiφi(θ
>Xi)

]

= E
[
E
[

sup
θ∈Θ

n−1∑
i=1

εiφi(θ
>Xi) + εnφn(θ>Xn)

∣∣∣(εi)n−1
i=1 , (Xi, Yi)i∈JnK

]]

≤ E
[
E
[

sup
θ∈Θ

n−1∑
i=1

εiφi(θ
>Xi) + εnγ|Xj

n|θ>Xn

∣∣∣(εi)n−1
i=1 , (Xi, Yi)i∈JnK

]]

= E
[

sup
θ∈Θ

n−1∑
i=1

εiφi(θ
>Xi) + εnγ|Xj

n|θ>Xn

]
.

By iterating the previous argument n times we find:

E
[

sup
θ∈Θ

n∑
i=1

εiφi(θ
>Xi)

]
≤ E

[
sup
θ∈Θ

n−1∑
i=1

εiγ|Xj
i |θ
>Xi

]
.

Now recalling that the diameter of Θ is ∆, we use Lemma 8 below with p = 1 to bound the
previous quantity as:

E
[

sup
θ∈Θ

n∑
i=1

εiγ|Xj
i |θ
>Xi

]
= γE

[
sup
θ∈Θ

〈
θ,

n∑
i=1

εiXi|Xj
i |
〉]

≤ γ∆E
[
E
[∥∥∥∥ n∑

i=1

εiXi|Xj
i |
∥∥∥∥

1

∣∣∣(Xi)i∈JnK

]]

≤ γ∆CαE
[ n∑
i=1

‖Xi‖1+α|Xj
i |

1+α

]1/(1+α)

≤ γ∆Cα

(
nE
[
(Xj)2(1+α)

]1/2 ∑
k∈JdK

E
[
(Xk)2(1+α)

]1/2)1/(1+α)

,

where we used a Cauchy-Schwarz inequality in the last step, which concludes the proof of Propo-
sition 2.
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Lemma 8 (Khintchine inequality variant). Let α ∈ (0, 1] and (xi)i∈JnK be real numbers with
n ∈ N and p > 0 and (εi)i∈JnK be i.i.d Rademacher random variables then we have the inequality:

E
[∣∣∣∣ n∑

i=1

εixi

∣∣∣∣p]1/p

≤ Bp,α
( n∑
i=1

|xi|1+α

)1/(1+α)

with the constant Bp,α := 2p
(

1+α
α

)αp/(1+α)−1
Γ
(
αp

1+α

)
. Moreover, for p = 1 the constant B1,α

is bounded for any α ≥ 0.

Proof. This proof is a generalization of Lemma 4.1 from [70] and uses similar methods. For all
λ > 0 we have:

E exp
(
λ
∑
i

εixi

)
=
∏
i

E exp(λεixi) =
∏
i

cosh(λxi)

≤
∏
i

exp
( |λxi|1+α

1 + α

)
= exp

(∑
i

|λxi|1+α

1 + α

)
,

where we used the inequality cosh(u) ≤ exp
(
|u|1+α
1+α

)
valid for all u ∈ R which can be quickly

proven. Since both functions are even, fix u > 0 and define fu(α) = exp
(
|u|1+α
1+α

)
− cosh(u), we

can show that fu is monotonous on [0, 1] separately for u ∈ (0,
√
e) and (e,+∞) and notice that

fu(0) and fu(1) are both non-negative for all u > 0 thanks to the famous inequality cosh(u) ≤
eu

2/2. Therefore, the inequality holds for u ∈ (0,
√
e) and (e,+∞). Finally, for u ∈ (

√
e, e), the

function fu(α) reaches a minimum at fu(1/ log(u)−1) = ue−cosh(u) and by taking logarithms
we have ue ≥ cosh(u) ⇐⇒ log(1+e2u) ≤ u+log(2)+e log(u) but since the derivatives verify

2
1+e−2u ≤ 2 ≤ 1 + e/u for u ∈ (

√
e, e) and ee/2 ≥ cosh(

√
e) the desired inequality follows by

integration.
By homogeneity, we can focus on the case

(∑n
i=1 |xi|1+α

)1/(1+α)
= 1, we compute:

E
∣∣∣∑

i

εixi

∣∣∣p =

∫ +∞

0
P
(∣∣∣∑

i

εixi

∣∣∣p > t
)
dt

≤ 2

∫ +∞

0
exp

( λ1+α

1 + α
− λt1/p

)
dt

= 2

∫ +∞

0
exp

(
− α

1 + α
u(1+α)/α

)
dup

= 2p
(1 + α

α

)αp/(1+α)−1
Γ
( αp

1 + α

)
= Bp

p,α,

where we used the previous inequality and chose λ = (t1/p)1/α in the last step. This proves the
main inequality. Finally, it is easy to see that B1,α is bounded for high values of α while for α ∼ 0
it is consequence of the fact that Γ(x) ∼ 1/x near 0 and the limit xx → 0 when x→ 0+.

9.8 Proof of Lemma 3

As previously, Lemma 1 along with Assumptions 1 and 2 guarantee that the gradient coordinates
have finite (1 + α)-moments. From here, Lemma 3 is a direct application of Lemma 9 stated and
proved below. In the following lemma, for any sequence (zi)

N
i=1 of real numbers, (z∗i )Ni=1 denotes

a non-decreasing reordering of it.
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Lemma 9. Let X̃1, . . . , X̃N , Ỹ1, . . . , ỸN denote an η-corrupted i.i.d sample with rate η from a
random variable X with expectation µ = EX and with finite 1 + γ centered moment E|X −
µ|1+γ = M < ∞ for some 0 < γ ≤ 1. Denote µ̂ the ε-trimmed mean estimator computed as
µ̂ = 1

N

∑N
i=1 φα,β(X̃i) with φα,β(x) = max(α,min(x, β)) and the thresholds α = Ỹ ∗εN and

β = Ỹ ∗(1−ε)N . Let 1 > δ ≥ e−N/4, taking ε = 8η + 12 log(4/δ)
n , we have

|µ̂− µ| ≤ 7M
1

1+γ (ε/2)
γ

1+γ (40)

with probability at least 1− δ.

Proof. This proof goes along the lines of the proof of Theorem 1 from [79] with the main differ-
ence that only the (1 + γ)-moment is used instead of the variance. Denote X the random variable
whose expectation µ = EX is to be estimated and X = X − µ. Let X1, . . . , XN , Y1, . . . , YN the
original uncorrupted i.i.d. sample from X and let X̃1, . . . , X̃N , Ỹ1, . . . , ỸN denote the corrupted
sample with rate η. We define the following quantity which will intervene in the proof:

E(ε,X) := max
{
E
[∣∣X −Qε/2(X)

∣∣1X≤Qε/2(X)

]
,E
[∣∣X −Q1−ε/2(X)

∣∣1X≥Q1−ε/2(X)

]}
. (41)

Step 1. We first derive confidence bounds on the truncation thresholds. Define the random vari-
able U = 1X≥Q1−2ε(X). Its standard deviation satisfies σU ≤ P1/2(X ≥ Q1−2ε(X)) =

√
2ε. By

applying Bernstein’s inequality we find with probability ≥ 1− exp(−εN/12) that:∣∣{i : Yi ≥ µ+Q1−2ε(X)
}∣∣ ≥ 3εN/2,

a similar argument with U = 1X>Q1−ε/2(X) yields with probability ≥ 1− exp(−εN/12) that:∣∣{i : Yi ≤ µ+Q1−ε/2(X)
}∣∣ ≥ (1− (3/4)ε)N,

and similarly with probability ≥ 1− exp(−εN/12) we have:∣∣{i : Yi ≤ µ+Q2ε(X)
∣∣}∣∣ ≥ 3εN/2,

and with probability ≥ 1− exp(−εN/12):∣∣{i : Yi ≥ µ+Qε/2(X)
}∣∣ ≥ (1− (3/4)ε)N,

so that with probability ≥ 1 − 4 exp(−εN/12) ≥ 1 − δ/2 the four previous inequalities hold
simultaneously. We call this event E which only depends on the variables Y1, . . . , YN . Since
η ≤ ε/8, if 2ηN samples are corrupted we still have:∣∣{i : Ỹi ≥ µ+Q1−2ε(X)

∣∣}∣∣ ≥ ((3/2)ε− 2η)N ≥ εN

and ∣∣{i : Ỹi ≤ µ+Q1−ε/2(X)
}∣∣ ≥ (1− (3/4)ε− 2η)N ≥ (1− ε)N

consequently, the two following bounds hold

Q1−2ε(X) ≤ Ỹ ∗(1−ε)N − µ ≤ Q1−ε/2(X)

and similarly
Qε/2(X) ≤ Ỹ ∗εN − µ ≤ Q2ε(X).

This provides guarantees on the truncation levels used which are α = Ỹ ∗εN and β = Ỹ ∗(1−ε)N .
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Step 2. We first bound the deviation
∣∣∣ 1
N

∑N
i=1 φα,β(Xi)− µ

∣∣∣ in the absence of corruption. W e
write:

1

N

N∑
i=1

φα,β(Xi)≤
1

N

N∑
i=1

φµ+Q2ε(X),µ+Q1−ε/2(X)(Xi)=E
[
φµ+Q2ε(X),µ+Q1−ε/2(X)(X)

]
+

1

N

N∑
i=1

(
φµ+Q2ε(X),µ+Q1−ε/2(X)(Xi)− E

[
φµ+Q2ε(X),µ+Q1−ε/2(X)(X)

])
. (42)

The first term is dominated by:

E
[
φµ+Q2ε(X),µ+Q1−ε/2(X)(X)

]
= E

[
φQ2ε(X),Q1−ε/2(X)(X)

]
= E

[
Q2ε(X)1X≤Q2ε(X)+X1Q2ε(X)<X<Q1−ε/2(X)+Q1−ε/2(X)1X≥Q1−ε/2(X)

]
= µ+ E

[
(Q2ε(X)−X)1X≤Q2ε(X) + (Q1−ε/2(X)−X)1X≥Q1−ε/2(X)

]
≤ µ+ E

[
(Q2ε(X)−X)1X≤Q2ε(X)

]
= µ+ E

[
(Q2ε(X)−X)1X≤Q2ε(X)

]
≤ µ+ E(4ε,X),

and lower bounded by:

E
[
φµ+Q2ε(X),µ+Q1−ε/2(X)(X)

]
= µ+ E

[
(Q2ε(X)−X)1X≤Q2ε(X) + (Q1−ε/2(X)−X)1X≥Q1−ε/2(X)

]
≥ µ+E

[
(Q1−ε/2(X)−X)1X≥Q1−ε/2(X)

]
=µ+E

[
(Q1−ε/2(X)−X)1X≥Q1−ε/2(X)

]
≥ µ− E(ε,X).

The sum in (42) above has terms upper bounded by Q1−ε/2(X) + E(ε,X). We need to work with
the knowledge that E|X|1+γ = M <∞ in order to bound their variance:

E
[
φµ+Q2ε(X),µ+Q1−ε/2(X)(X)− E[φµ+Q2ε(X),µ+Q1−ε/2(X)(X)]

]2
≤ E

[
φµ+Q2ε(X),µ+Q1−ε/2(X)(X)− µ

]2
= E

[
φQ2ε(X),Q1−ε/2(X)(X)2

]
= E

[
Q2ε(X)1X≤Q2ε(X)+X1Q2ε(X)<X<Q1−ε/2(X)+Q1−ε/2(X)1X≥Q1−ε/2(X)

]2
= E

[
Q2ε(X)21X≤Q2ε(X)+X

2
1Q2ε(X)<X<Q1−ε/2(X)+Q1−ε/2(X)21X≥Q1−ε/2(X)

]
.

To control the three terms in the previous expression we mimic the proof of Chebyshev’s inequality
to obtain that, when Q2ε(X) < 0:

2ε = P
(
X ≤ Q2ε(X)

)
≤ P

(
|X|1+γ ≥ |Q2ε(X)|1+γ

)
≤ M

|Q2ε(X)|1+γ
, (43)

analogously, when Q1−ε/2(X) > 0 we have:

ε/2 = P
(
X ≥ Q1−ε/2(X)

)
≤ P

(
|X|1+γ ≥ |Q1−ε/2(X)|1+γ

)
≤ M

|Q1−ε/2(X)|1+γ
, (44)

from (43), we deduce that

E
[
Q2ε(X)21X≤Q2ε(X)

]
= 2εQ2ε(X)2 ≤ 2ε

(M
2ε

) 2
1+γ ≤ 2ε

(2M

ε

)2/(1+γ)
,
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and from (44) we find

E
[
Q1−ε/2(X)21X≥Q1−ε/2(X)

]
= Q1−ε/2(X)2ε/2 ≤ 2ε

(2M

ε

)2/(1+γ)
.

In the pathological case where we have Q2ε(X) ≥ 0 we use that Q2ε(X) ≤ Q1−ε/2(X) (for
ε ≤ 2/5) we deduce |Q2ε(X)| ≤ |Q1−ε/2(X)| and hence we still have

E
[
Q2ε(X)21X≤Q2ε(X)

]
≤ 2εQ1−ε/2(X)2 ≤ 2ε

(2M

ε

)2/(1+γ)
.

The case Q1−ε/2(X) ≤ 0 is similarly handled. Moreover, a simple calculation yields

E
[
X

2
1Q2ε(X)≤X≤Q1−ε/2(X)

]
≤Mmax

{
|Q2ε(X)|, |Q1−ε/2(X)|

}1−γ≤2ε
(2M

ε

)2/(1+γ)
.

All in all, we have shown the inequality:

E
[
φµ+Q2ε(X),µ+Q1−ε/2(X)(X)− E[φµ+Q2ε(X),µ+Q1−ε/2(X)(X)]

]2 ≤ 6ε
(2M

ε

)2/(1+γ)
,

which we now use to apply Bernstein’s inequality on the sum in (42) to find, conditionally on
Y1, . . . , Yn, with probability at least 1− δ/4:

1

N

N∑
i=1

φα,β(Xi)

≤ µ+ E(4ε,X) +

√
6ε log(4/δ)

N

(2M

ε

)1/(1+γ)
+

log(4/δ)

3N
(Q1−ε/2(X) + E(ε,X))

≤ µ+ 2E(4ε,X) +

√
6ε log(4/δ)

N

(2M

ε

)1/(1+γ)
+

log(4/δ)

3N
Q1−ε/2(X)

≤ µ+ 2E(4ε,X) + (3/2)M1/(1+γ)(ε/2)γ/(1+γ),

where we used (44), the fact that log(4/δ)
N ≤ ε/12 and the assumption that δ ≥ e−N/4. Using the

same argument on the lower tail, we obtain, on the event E, that with probability at least 1− δ/2

∣∣∣ 1

N

N∑
i=1

φα,β(Xi)− µ
∣∣∣ ≤ 2E(4ε,X) + (3/2)M

1
1+γ (ε/2)γ/(1+γ).

Step 3. Now we show that
∣∣∣ 1
N

∑N
i=1 φα,β(Xi)− 1

N

∑N
i=1 φα,β(X̃i)

∣∣∣ is of the same order as the

previous bounds. There are at most 2ηN indices such that Xi 6= X̃i and for such differences we
have the bound: ∣∣φα,β(Xi)− φα,β(X̃i)

∣∣ ≤ |Qε/2(X)|+ |Q1−ε/2(X)|,

and since we have η ≤ ε/8 then∣∣∣ 1

N

∑
i=1

φα,β(Xi)−
1

N

∑
i=1

φα,β(X̃i)
∣∣∣ ≤ 2η

(
|Qε/2(X)|+ |Q1−ε/2(X)|

)
≤ ε

2
max

{
|Qε/2(X)|, |Q1−ε/2(X)|

}
≤M1/(1+γ)(ε/2)γ/(1+γ),
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where the last step follows from (43) and (44). Finally, using similar arguments along with
Hölder’s inequality, we show that:

E
[
|X −Qε/2(X)|1X≤Qε/2(X)

]
≤ E

[
|X|1X≤Qε/2(X)

]
+ E

[
|Qε/2(X)|1X≤Qε/2(X)

]
≤M1/(1+γ)(ε/2)γ/(1+γ) + |Qε/2(X)|(ε/2)

≤ 2M1/(1+γ)(ε/2)γ/(1+γ),

and a similar computation for E
[
|X −Q1−ε/2(X)|1X≥Q1−ε/2(X)

]
leads to

E(4ε,X) ≤ 2M1/(1+γ)(2ε)γ/(1+γ).

This completes the proof of Lemma 9.

9.9 Proof of Proposition 3

Step 1. Notice that the TM estimator is also a monotonous non decreasing function of each of its
entries when the others are fixed. This allows us to replicate Step 1 of the proof of Proposition 1.
We define an ε-net Nε on the set Θ, fix θ ∈ Θ and let θ̃ be the closest point in Nε. We obtain, for
all j ∈ JdK, the inequalities:∣∣ĝTMj (θ)− gj(θ)

∣∣ ≤ ∣∣ĝTMj (θ)− gj(θ̃)
∣∣+
∣∣gj(θ̃)− gj(θ)∣∣

≤
∣∣
qgTMj (θ̃)− gj(θ̃)

∣∣+ εLj , (45)

where qgTMj (θ̃) is the TM estimator obtained for the entries `′
(
θ̃>Xi, Yi

)
Xj
i + εγ‖Xi‖2 = gij(θ̃) +

εγ‖Xi‖2.

Step 2. We use the concentration property of the TM estimator to bound the previous quantity
which is in terms of θ̃. The terms

(
gij(θ̃) +εγ‖Xi‖2

)
i∈JnK are independent and distributed accord-

ing to Z := `′
(
θ̃>X,Y

)
Xj + γε‖X‖2. Obviously we have E`′

(
θ>X,Y

)
Xj = gj(θ). Further-

more, let L = Eγ‖X‖2, so that E
[
gij(θ̃) + εγ‖Xi‖2

]
= gj(θ) + εL. We will apply Lemma 9 for

qgTMj (θ̃). Before we do so, we need to compute the centered (1 +α)-moment of Z. Let mj,α(θ̃) and
mL,α be the centered (1 + α)-moments of `′(θ>X,Y )Xj and γ‖X‖2 respectively, we have:

E
∣∣Z − EZ

∣∣1+α ≤ 2α
(
mj,α(θ) + ε1+αmL,α

)
.

Now applying Lemma 9 we find with probability no less than 1− δ∣∣
qgTMj (θ̃)− gj(θ̃)− εL

∣∣ ≤ 7
(
mj,α(θ̃) + ε1+αmL,α

)1/(1+α)
(2ε)α/(1+α),

with εδ = 8η+12 log(4/δ)
n . By combining with (45) and using a union bound argument, we deduce

that with the same probability, we have for all j ∈ JdK∣∣
qgTMj (θ̃)− gj(θ̃)

∣∣ ≤ 7
(
mj,α(θ̃) + ε(1+α)2mL,α

)1/(1+α)
(4εdδ)

α/(1+α) + εL. (46)

Step 3. We use the ε-net to obtain a uniform bound. We proceed similarly as in the proof of
Proposition 1. For θ ∈ Θ denote θ̃(θ) ∈ Nε the closest point in Nε satisfying in particular
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‖θ̃(θ)− θ‖ ≤ ε, we write, following previous arguments

sup
θ∈Θ

∣∣ĝTMj (θ)− gj(θ)
∣∣ ≤ sup

θ∈Θ

∣∣ĝTMj (θ)− gj(θ̃(θ))
∣∣+
∣∣gj(θ̃(θ))− gj(θ)∣∣

≤ sup
θ∈Θ

∣∣
qgTMj (θ̃(θ))− gj(θ̃(θ))

∣∣+ εLj

= max
θ̃∈Nε

∣∣
qgTMj (θ̃)− gj(θ̃)

∣∣+ εLj .

Taking union bound over θ̃ ∈ Nε for the inequality (46) and choosing ε = n−α/(1+α) concludes
the proof of Proposition 3.

9.10 Proof of Corollary 1

We first write the result of Proposition 3 with a big O notation. This tells us that with probability
at least 1− δ for all θ ∈ Θ, for all j ∈ JdK we have :∣∣εTMj (δ)

∣∣ ≤ O(M1/(1+α)
j,α

( log(d/δ) + d log(n)

n

)α/(1+α)
)

It only remains to apply Theorem 1 with importance sampling. The main result corresponds
to having the second term (the statistical error) dominate the bound given by Theorem 1. This
happens as soon as the number of iterations T is high enough so that

(
R(θ(0))−R?

)(
1− λ∑

j∈JdK Lj

)T
≤
∥∥εTM(δ)∥∥2

2

2λ
.

From here, it is straightforward to check that the stated number of iterations suffices.

9.11 Proof of Lemma 4

Similarly to the proof of Lemma 2, the assumptions, this time taken with α = 1, imply that the
gradient has a second moment so that the existence of σ2

j = V(gj(θ)) is guaranteed. We apply
Lemma 1 from [50] with δ/2 to obtain:

1

2
|ĝCHj (θ)− gj(θ)| ≤

Cσ2
j

s
+
s log(4δ−1)

n

with probability at least 1− δ/2, where C is a constant such that we have:

− log(1− u+ Cu2) ≤ ψ(u) ≤ log(1 + u+ Cu2),

and one can easily check that our choice of ψ, the Gudermannian function, satisfies the previ-
ous inequality for C = 1/2. This, along with the choice of scale s according to (21) and our
assumption on σ̂j yields the announced deviation bound by a simple union bound argument.

9.12 Proof of Proposition 4

In this proof, for a scale s > 0 and a set of real numbers (xi)i∈JnK, we let x̄ = 1
n

∑
i∈JnK xi be

their mean and define the function ζs
(
(xi)i∈JnK

)
as the unique x satisfying∑

i∈JnK

ψ
(x− x̄

s

)
= 0.

Since the function ψ is increasing the previous equation has a unique solution. Moreover, for fixed
scale s, the function ζs

(
(xi)i∈JnK

)
is monotonous non decreasing w.r.t. each xi when the others

are fixed.
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Step 1. We proceed similarly as in the proof of Proposition 1 except that we only use the mono-
tonicity of the CH estimator with fixed scale. Let Nε be an ε-net for Θ with ε = 1/

√
n. We have

|Nε| ≤ (3∆/2ε)d with ∆ the diameter of Θ. Fix a coordinate j ∈ JdK, a point θ ∈ Θ and let θ̃ be
the closest point to it in the ε-net. We wish to bound the difference∣∣ĝCHj (θ)− gj(θ)

∣∣ ≤ ∣∣ĝCHj (θ)− gj(θ̃)
∣∣+
∣∣gj(θ̃)− gj(θ)∣∣

≤
∣∣ĝCHj (θ)− gj(θ̃)

∣∣+ εLj ,

where we have the CH estimator ĝCHj (θ) = ζs(θ)
(
(gij(θ))i∈JnK

)
with scale s(θ) computed according

to (21) and (22). Assume, without loss of generality that ĝCHj (θ) − gj(θ̃) ≥ 0. Using the non-
decreasing property of the CH estimator at a fixed scale, we find that∣∣ĝCHj (θ)− gj(θ̃)| =

∣∣ζs(θ)((gij(θ))i∈JnK
)
− gj(θ̃)

∣∣
≤
∣∣ζs(θ)((gij(θ̃) + εγ‖Xi‖2)i∈JnK

)
− gj(θ̃)

∣∣.
Indeed, one has

gij(θ) = gij(θ̃) +
(
gij(θ)− gij(θ̃)

)
≤ gij(θ̃) + γ‖θ̃ − θ‖ · ‖Xi‖ · |Xj

i |

≤ gij(θ̃) + εγ‖Xi‖2.

We introduce the notation qgCHj (θ̃) := ζs(θ)
(
(gij(θ̃) + εγ‖Xi‖2)i∈JnK

)
so that:∣∣ĝCHj (θ)− gj(θ̃)

∣∣ ≤ ∣∣qgCHj (θ̃)− gj(θ̃)
∣∣.

Step 2. We now use the concentration property of CH to bound the previous quantity which
is in terms of θ̃. We apply Lemma 1 from [50] with δ/2 and scale s(θ) to the samples (gij(θ̃) +

εγ‖Xi‖2)i∈JnK which are independent and distributed according to the random variable `′
(
θ̃>X,Y

)
Xj+

εγ‖X‖2 with expectation gj(θ̃) + εL. Using our assumptions on σL, σj(θ), σj(θ̃), σ̂j(θ) and the
definition of the scale s(θ) according to (21) we find:

1

2

∣∣
qgCHj (θ̃)− gj(θ̃)− εL

∣∣ =
1

2

∣∣ζs(θ)((gij(θ̃) + εγ‖Xi‖2)i∈JnK
)
− gj(θ̃)− εL

∣∣
≤
CV(gij(θ̃) + εγ‖Xi‖2)

s(θ)
+
s(θ) log(4/δ)

n

≤
CC ′V(gij(θ̃) + εγ‖Xi‖2)

σj(θ)

√
2 log(4/δ)

n
+ C ′σj(θ)

√
2 log(4/δ)

n

≤
CC ′2(σ2

j (θ̃) + ε2σ2
L)

σj(θ)

√
2 log(4/δ)

n
+ C ′σj(θ)

√
2 log(4/δ)

n

≤ CC ′2
(√

2σj(θ̃) + εσL
)√2 log(4/δ)

n
+ 2C ′σj(θ̃)

√
log(4/δ)

n

≤ 4C ′σj(θ̃)

√
log(4/δ)

n
+ 2C ′εσL

√
log(4/δ)

n

≤ 2C ′(2σj(θ̃) + εσL)

√
log(4/δ)

n
.

A simple union bound yields that for all j ∈ JdK∣∣
qgCHj (θ̃)− gj(θ̃)

∣∣ ≤ 4C ′(2σj(θ̃) + εσL)

√
log(4d/δ)

n
+ εL. (47)
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Step 3. We use the ε-net to obtain a uniform bound. We proceed similarly to the proof of
Proposition 1. For θ ∈ Θ denote θ̃(θ) ∈ Nε the closest point in Nε satisfying in particular
‖θ̃(θ)− θ‖ ≤ ε, we write, following previous arguments

sup
θ∈Θ

∣∣ĝCHj (θ)− gj(θ)
∣∣ ≤ sup

θ∈Θ

∣∣ĝCHj (θ)− gj(θ̃(θ))
∣∣+
∣∣gj(θ̃(θ))− gj(θ)∣∣

≤ sup
θ∈Θ

∣∣
qgCHj (θ̃(θ))− gj(θ̃(θ))

∣∣+ εLj

= max
θ̃∈Nε

∣∣
qgCHj (θ̃)− gj(θ̃)

∣∣+ εLj .

Taking union bound over θ̃ ∈ Nε for the inequality (47) and using the choice ε = 1/
√
n concludes

the proof of Proposition 4.

9.13 Proof of Corollary 2

Under the assumptions made, the constants (Lj)j∈JdK are estimated using the MOM estimator and
we obtain the bounds (Lj)j∈JdK which hold with probability at least 1 − δ/2 by a union bound
argument. The rest of the proof is the same as that of Theorem 1 using a failure probability δ/2
instead of δ and replacing the constants (Lj)j∈JdK by their upperbounds accordingly. The result
then follows after a simple union bound argument.

9.14 Proof of Lemma 5

LetB1, . . . , BK be the blocks used for the estimation so thatB1∪· · ·∪BK = JnK andBk1∩Bk2 =
∅ for k1 6= k2. Let K denote the uncorrupted block indices K = {k ∈ JKK such that Bk ∩O = ∅}
and assume |O| ≤ (1−ε)K/2. For k ∈ JKK let σ̂2

k = K
n

∑
i∈Bk X

2
i be the block means computed

by MOM. Denote N = n/K, by using (a slight generalization of) Lemma 7 and the L(1+α)-L1

condition satisfied by X2 with a known constant C, we obtain that with probability at least 1− δ
we have

|σ̂2
k − σ2|≤

(3E|X2−σ2|1+α

δNα

) 1
1+α ≤

( 3

δNα

) 1
1+α

CE|X2 − σ2| ≤
( 3

δNα

) 1
1+α

Cσ2,

which implies the inequality

σ2 ≤
(

1− C
( 3

δNα

) 1
1+α
)−1

σ̂2
k.

Define the Bernoulli random variables Uk = 1
{
σ2 >

(
1 − C

(
3

δNα

) 1
1+α

)−1
σ̂2
k

}
for k ∈ JKK

which have success probability ≤ δ. Denote S =
∑

k Uk, we can bound the failure probability of
the estimator as follows:

P
((

1− C
( 3

δNα

) 1
1+α
)−1

σ̂2 < σ2
)
≤ P

[
S > K/2− |O|

]
= P

[
S − ES > K/2− |O| − δ|K|

]
≤ P

[
S − ES > K(ε− 2δ)/2

]
≤ exp

(
−K(ε− 2δ)2/2

)
,

where we used the fact that |O| ≤ (1 − ε)K/2 and |K| ≤ K for the second inequality and
Hoeffding’s inequality for the last. The proof is finished by taking ε = 5/6 and δ = 1/4.
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9.15 Proof of Lemma 6

Lemma 6 is a direct consequence of the following result.

Lemma 10. Let X1, . . . , Xn an i.i.d sample of a random variable X with expectation EX = µ
and (1+α)-moment E|X−µ|1+α = mα <∞. Assume that the variable X satisfies the L(1+α)2-
L(1+α) condition with constant C > 1. Let µ̂ be the median-of-means estimate of µ with K blocks
and m̂α a similarly obtained estimate of mα from the samples (|Xi − µ̂|1+α)i∈JnK. Then, with
probability at least 1− 2 exp(−K/18) we have

m̂α ≥ (1− κ)mα,

with κ = ε+ 24(1 + α)
(

1+ε
n/K

) α
1+α and ε =

(
3×22+α(1+C(1+α)2 )

(n/K)α

) 1
1+α .

Proof. Let µ̂ be the MOM estimate of µ with K blocks, using Lemma 2, we have with probability
at least 1− exp(−K/18),

|µ− µ̂| > (24mα)
1

1+α

(K
n

) α
1+α

. (48)

Let m̂α be the MOM estimate of mα obtained from the samples
(
|Xi − µ̂|1+α

)
i∈JnK. Denote

B1, . . . , BK the blocks we use, we have:

m̂α = median

(
K

n

∑
i∈Bj

|Xi − µ̂|1+α

)
j∈JKK

for any i ∈ JnK. Let N = n/K, using the convexity of the function f(x) = |x|1+α we find that:

1

N

∑
i∈Bj

∣∣Xi − µ̂
∣∣1+α

=
1

N

∑
i∈Bj

∣∣(Xi − µ) + (µ− µ̂)
∣∣1+α

≥ 1

N

∑
i∈Bj

|Xi − µ|1+α +
1

N
(1 + α)

∑
i∈Bj

|Xi − µ|αsign(Xi − µ)(µ− µ̂)

≥ 1

N

∑
i∈Bj

|Xi − µ|1+α − (1 + α)|µ− µ̂|
[ 1

N

∑
i∈Bj

|Xi − µ|α
]

≥ 1

N

∑
i∈Bj

|Xi − µ|1+α − (1 + α)|µ− µ̂|
[ 1

N

∑
i∈Bj

|Xi − µ|1+α
] α

1+α
, (49)

where the last step uses Jensen’s inequality. Using Lemma 7 we have, for δ > 0, the concentration
bound

P
(∣∣∣ 1

N

∑
i∈Bj

∣∣Xi − µ
∣∣1+α −mα

∣∣∣ > (3E
∣∣|X − µ|1+α −mα

∣∣1+α

δNα

) 1
1+α

)
≤ δ

which, using that X satisfies the L(1+α)2-L(1+α) condition, translates to

P
(∣∣∣ 1

N

∑
i∈Bj

∣∣Xi − µ
∣∣1+α −mα

∣∣∣ > ε

)
≤

3E
∣∣|X − µ|1+α −mα

∣∣1+α

ε1+αNα

≤
3× 2α

(
E|X − µ|(1+α)2 +m1+α

α

)
ε1+αNα

≤
3× 2αm1+α

α

(
1 + C(1+α)2

)
ε1+αNα

.
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Replacing ε with εmα we find

P
(∣∣∣ 1

N

∑
i∈Bj

|Xi − µ|1+α −mα

∣∣∣ > εmα

)
≤

3× 2α
(
1 + C(1+α)2

)
Nαε1+α

.

Now conditioning on the event (48) and using the previous bound with ε =
(

3×2α
(

1+C(1+α)2
)

Nαδ

) 1
1+α

in (49), we obtain that

P
(

1

N

∑
i∈Bj

∣∣Xi − µ̂
∣∣1+α ≤ (1− ε)mα − (1 + α)

(24mα

Nα

) 1
1+α

((1 + ε)mα)
α

1+α

)
≤ δ

=⇒ P
(

1

N

∑
i∈Bj

∣∣Xi − µ̂
∣∣1+α ≤

(
1− ε− 24(1 + α)

(1 + ε

N

) α
1+α
)

︸ ︷︷ ︸
=:(1−κ)

mα

)
≤ δ.

Now define Uj as the indicator variable of the event in the last probability. We have just seen it
has success rate less than δ. We can use the MOM trick, assuming the number of outliers satisfies
|O| ≤ K(1− ε)/2 for ε ∈ (0, 1), we have for S =

∑
j Uj

P(m̂α ≤ (1− κ)mα) ≤ P(S > K/2− |O|)
= P

[
S − ES > K/2− |O| − δ|K|

]
≤ P

[
S − ES > K(ε− 2δ)/2

]
≤ exp

(
−K(ε− 2δ)2/2

)
.

Taking ε = 5/6 and δ = 1/4 yields that the previous probability is≤ exp(−K/18). Finally, recall
that we conditioned on the event where the deviation |µ− µ̂| is bounded as previously stated and
that this event holds with ≥ 1− exp(−K/18). Taking this conditioning into account and using a
union bound argument leads to the fact that the bound

m̂α ≥ (1− κ)mα

holds with probability at least 1− 2 exp(−K/18).

9.16 Proof of Theorem 3

This proof is inspired from Theorem 5 in [88] and Theorem 1 in [95] while keeping track of the
degradations caused by the errors on the gradient coordinates.

We condition on the event (30) and denote εj = εj(δ) and εEuc = ‖ε(δ)‖2. We define for all
θ ∈ Θ

uj(θ) = argmin
ϑ∈Θj

ĝj(θ)(ϑ− θj) +
Lj
2

(ϑ− θj)2 + εj |ϑ− θj |

= projΘj
(
θj − βjτεj

(
ĝj(θ)

))
and denote θ(t) the optimization iterates for t = 0, . . . , T and jt the random coordinate sampled
at step t and let ĝt = ĝjt(θ

(t)) for brevity. We have that ujt(θ
(t)) satisfies the following optimality

condition

∀ϑ ∈ Θjt

(
ĝt + Ljt

(
ujt(θ

(t))− θ(t)
jt

)
+ εjtρt

)(
ϑ− ujt(θ(t))

)
≥ 0,
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where ρt = sign
(
ujt(θ

(t)) − θ
(t)
jt

)
. Using this condition for ϑ = θ

(t)
jt

and the coordinate-wise
Lipschitz smoothness property of R we find

R(θ(t+1)) ≤ R(θ(t)) + gjt(θ
(t))
(
ujt(θ

(t))− θ(t)
jt

)
+
Ljt
2

(
ujt(θ

(t))− θ(t)
jt

)2
≤ R(θ(t)) + (ĝt + εjtρt)

(
ujt(θ

(t))− θ(t)
jt

)
+
Ljt
2

(
ujt(θ

(t))− θ(t)
jt

)2 (50)

≤ R(θ(t))− Ljt
2

(
ujt(θ

(t))− θ(t)
jt

)2
. (51)

Defining the potential Φ(θ) =
∑d

j=1 Lj(θj − θ?j )2, we have:

Φ(θ(t+1)) = Φ(θ(t)) + 2Ljt
(
ujt(θ

(t))− θ(t)
jt

)(
θ

(t)
jt
− θ?jt

)
+ Ljt

(
ujt(θ

(t))− θ(t)
jt

)2
= Φ(θ(t)) + 2Ljt

(
ujt(θ

(t))− θ(t)
jt

)(
ujt(θ

(t))− θ?jt
)
− Ljt

(
ujt(θ

(t))− θ(t)
jt

)2
≤ Φ(θ(t))− 2(ĝt + εjtρt)

(
ujt(θ

(t))− θ?jt
)
− Ljt

(
ujt(θ

(t))− θ(t)
jt

)2
= Φ(θ(t)) + 2(ĝt + εjtρt)

(
θ?jt − θ

(t)
jt

)
− 2
(

(ĝt + εjtρt)
(
ujt(θ

(t))− θ(t)
jt

)
+
Ljt
2

(
ujt(θ

(t))− θ(t)
jt

)2)
≤ Φ(θ(t)) + 2(ĝt + εjtρt)

(
θ?jt − θ

(t)
jt

)
+ 2
(
R(θ(t))−R(θ(t+1))

)
≤ Φ(θ(t)) + 2gjt(θ

(t))
(
θ?jt − θ

(t)
jt

)
+ 2
(
R(θ(t))−R(θ(t+1))

)
+ 4εjt

∣∣θ?jt − θ(t)
jt

∣∣,
where the first inequality uses the optimality condition with ϑ = θ?jt and the second one uses (50).
Now, defining Ψ(θ) = 1

2Φ(θ) + R(θ), taking the expectation w.r.t. jt and using the convexity of
R and a Cauchy-Schwarz inequality, we find

E
[
Ψ(θ(t))−Ψ(θ(t+1))

]
≥ 1

d

(
R(θ(t))−R(θ?)− 2εEuc

∥∥θ(t) − θ?
∥∥

2

)
.

Recall that according to (51), we have R(θ(t+1)) ≤ R(θ(t)), summing over t = 0, . . . , T we find:

E
[T + 1

d

(
R(θ(T ))−R(θ?)

)]
≤ E

[1

d

T∑
t=0

(
R(θ(t))−R(θ?)

)]
≤

T∑
t=0

(
E
[
Ψ(θ(t))−Ψ(θ(t+1))

]
+

2εEuc
d

E
[∥∥θ(t) − θ?

∥∥
2

])
= E

[
Ψ(θ(0))−Ψ(θ(t+1))

]
+

2εEuc
d

T∑
t=0

E
[∥∥θ(t) − θ?

∥∥
2

]
≤ Ψ(θ(0)) +

2εEuc
d

T∑
t=0

E
[∥∥θ(t) − θ?

∥∥
2

]
,

which yields the result after multiplying by d
T+1 . To finish, we show that conditionally on any

choice of jt we have ‖θ(t+1) − θ?‖2 ≤ ‖θ(t) − θ?‖2. Indeed a straightforward computation yields∥∥θ(t+1) − θ?
∥∥2

2
=
∥∥θ(t) − θ?

∥∥2

2
+
(
ujt(θ

(t))− θ(t)
jt

)2
+ 2
(
ujt(θ

(t))− θ(t)
jt

)(
θ

(t)
jt
− θ?jt

)
.

We need to show that δ2
t ≤ −2δt

(
θ

(t)
jt
−θ?jt

)
with δt = (ujt(θ

(t))−θ(t)
jt

). Notice that δt always has
the opposite sign of gjt(θ

(t)) (thanks to the thresholding) so by convexity ofR along the coordinate

52



jt we have δt
(
θ

(t)
jt
− θ?jt

)
≤ 0 and so it is down to showing |δt| ≤ 2

∣∣θ(t)
jt
− θ?jt

∣∣ which can be seen
from

|δt| ≤
∣∣gjt(θ(t))

∣∣
Ljt

=

∣∣gjt(θ(t))− gjt(θ?)
∣∣

Ljt
≤
∣∣θ(t)
jt
− θ?jt

∣∣,
which concludes the proof of Theorem 3.
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